DOI QR코드

DOI QR Code

ROUGH SET THEORY APPLIED TO FUZZY FILTERS IN BE-ALGEBRAS

  • Ahn, Sun Shin (Department of Mathematics Education Dongguk University) ;
  • Kim, Chol (Department of Mathematics Education Dongguk University)
  • Received : 2015.09.09
  • Published : 2016.07.31

Abstract

The notion of a rough fuzzy filter in a BE-algebra is introduced and some properties of such a filter are investigated. The relations between the upper (lower) rough filters and the upper (lower) approximations of their homomorphism images are discussed.

Keywords

References

  1. S. S. Ahn and J. M. Ko, Filters in commutative BE-algebras, Commun. Korean Math. Soc. 27 (2012), no. 2, 233-242. https://doi.org/10.4134/CKMS.2012.27.2.233
  2. S. S. Ahn and K. K. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2008), no. 2, 279-285.
  3. S. S. Ahn and K. K. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2009), no. 2, 281-287. https://doi.org/10.4134/BKMS.2009.46.2.281
  4. R. Biswas and S. Nanda, Rough groups and rough subgroups, Bull. Pol. Ac. Math. 42 (1994), no. 3, 251-254.
  5. K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japo. 23 (1978), no. 1, 1-26.
  6. Y. B. Jun and S. S. Ahn, Fuzzy implicative filters with degrees in the interval (0, 1], J. Computational Anal. Appl. 15 (2013), 1456-1466.
  7. S. E. Kang and S. S. Ahn, Rough filters of BE-algebras, J. Appl. Math. Inform. 30 (2012), no. 5-6, 1023-1030. https://doi.org/10.14317/JAMI.2012.30.5_6.1023
  8. H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. 66 (2007), no. 1, 113-116.
  9. N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1995), 139-163.
  10. N. Kuroki and J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1997), no. 1, 183-191.
  11. N. Kuroki and P. P. Wang, The lower and upper approximations in a fuzzy group, Infrom. Sci. 90 (1996), no. 1-4, 203-220. https://doi.org/10.1016/0020-0255(95)00282-0
  12. C. R. Lim and H. S. Kim, Rough ideals in BCK/BCI-algebras, Bull. Polish Acad. Sci. Math. 51 (2003), no. 1, 59-67.
  13. B. J. Meng, On filters in BE-algebras, Sci. Math. Jpn. 71 (2010), no. 2, 201-207.
  14. J. N. Mordeson, Rough set theory applied to (fuzzy) ideals theory, Fuzzy Sets and Systems 121 (2001), no. 2, 315-324. https://doi.org/10.1016/S0165-0114(00)00023-3
  15. Z. Pawlak, Rough sets, Internat. J. Comput. Inform. Sci. 11 (1982), no. 5, 341-356. https://doi.org/10.1007/BF01001956
  16. Z. Pawlak, Rough sets and fuzzy sets, Fuzzy Sets and Systems 17 (1985), no. 1, 99-102. https://doi.org/10.1016/S0165-0114(85)80029-4
  17. Q. M. Xiao and Z. L. Zhang, Rough prime ideals and rough fuzzy prime ideals in semi-groups, Inform. Sci. 176 (2006), no. 6, 725-733. https://doi.org/10.1016/j.ins.2004.12.010
  18. J. Zhan, The Uncertainties of Ideal Theory on Hemirings, Science Press, 2015.
  19. J. Zhan, Q. Liu, and B. Davvaz, A new rough set theory: rough soft hemirings, J. Intell. Fuzzy Systems 28 (2015), no. 4, 1687-1697.