DOI QR코드

DOI QR Code

Behavior of Solutions of a Fourth Order Difference Equation

  • Abo-Zeid, Raafat (Department of Basic Science, The Valley Higher Institute for Engineering & Technology)
  • Received : 2015.11.05
  • Accepted : 2016.02.05
  • Published : 2016.06.23

Abstract

In this paper, we introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation $$x_{n+1}={\frac{ax_{n-3}}{b-cx_{n-1}x_{n-3}}}$$, $n=0,1,{\ldots}$ where a, b, c are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.

Keywords

References

  1. R. Abo-Zeid and C. Cinar, Global behavior of the difference equation $x_{n+1}$ = $\frac{Ax_{n-1}}{B-Cx_nx_{n-2}}$, Bol. Soc. Paran. Mat.31(1)(2013), 43-49.
  2. R. Abo-Zeid, Global Attractivity of a Higher-Order Difference Equation, Discrete Dyn. Nat. Soc. Article ID930410(2012), 11 Pages.
  3. R. P. Agarwal, Difference Equations and Inequalities, First Edition, Marcel Dekker, 1992.
  4. M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2006), 768-774.
  5. A. Andruch-Sobi, M. Migda, Further properties of the rational rercursive sequence $x_{n+1}$ = $\frac{ax_{n-1}}{b-cx_nx_{n-1}}$, Opuscula Math., 26(3)(2006), 387-394.
  6. A. Andruch-Sobi, M. Migda, On the rational recursive sequence $x_{n+1}$ = $x_{n+1}$ = $\frac{ax_{n-1}}{b-cx_nx_{n-1}}$, Tatra Mt. Math. Publ. 43(2009), 1-9.
  7. E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
  8. E. M. Elsayed, On the solution of some difference equations, Eur. J. Pure Appl. Math., 4(2011), 287-303.
  9. E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
  10. G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys., 1(4)(1993), 289-294.
  11. V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
  12. N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl., 253(1)(1999), 151-158.
  13. M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
  14. H. Levy and F. Lessman, Finite Difference Equations, Dover, New York, NY, USA, 1992.
  15. H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Diff. Eq. Appl., 15(3)(2009), 215-224. https://doi.org/10.1080/10236190802054126
  16. S. Stevic, On positive solutions of a (k+1)th order difference equation, Appl. Math. Let., 19(5)(2006), 427-431. https://doi.org/10.1016/j.aml.2005.05.014
  17. S. Stevic, More on a rational recurrence relation, Appl. Math. E-Notes, 4(2004), 80-84.

Cited by

  1. Existence of Solutions to Boundary Value Problems for a Fourth-Order Difference Equation vol.2018, pp.1607-887X, 2018, https://doi.org/10.1155/2018/5278095