References
-
R. Abo-Zeid and C. Cinar, Global behavior of the difference equation
$x_{n+1}$ =$\frac{Ax_{n-1}}{B-Cx_nx_{n-2}}$ , Bol. Soc. Paran. Mat.31(1)(2013), 43-49. - R. Abo-Zeid, Global Attractivity of a Higher-Order Difference Equation, Discrete Dyn. Nat. Soc. Article ID930410(2012), 11 Pages.
- R. P. Agarwal, Difference Equations and Inequalities, First Edition, Marcel Dekker, 1992.
- M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2006), 768-774.
-
A. Andruch-Sobi, M. Migda, Further properties of the rational rercursive sequence
$x_{n+1}$ =$\frac{ax_{n-1}}{b-cx_nx_{n-1}}$ , Opuscula Math., 26(3)(2006), 387-394. -
A. Andruch-Sobi, M. Migda, On the rational recursive sequence
$x_{n+1}$ =$x_{n+1}$ =$\frac{ax_{n-1}}{b-cx_nx_{n-1}}$ , Tatra Mt. Math. Publ. 43(2009), 1-9. - E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.
- E. M. Elsayed, On the solution of some difference equations, Eur. J. Pure Appl. Math., 4(2011), 287-303.
- E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
- G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys., 1(4)(1993), 289-294.
- V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
- N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl., 253(1)(1999), 151-158.
- M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
- H. Levy and F. Lessman, Finite Difference Equations, Dover, New York, NY, USA, 1992.
- H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Diff. Eq. Appl., 15(3)(2009), 215-224. https://doi.org/10.1080/10236190802054126
- S. Stevic, On positive solutions of a (k+1)th order difference equation, Appl. Math. Let., 19(5)(2006), 427-431. https://doi.org/10.1016/j.aml.2005.05.014
- S. Stevic, More on a rational recurrence relation, Appl. Math. E-Notes, 4(2004), 80-84.
Cited by
- Existence of Solutions to Boundary Value Problems for a Fourth-Order Difference Equation vol.2018, pp.1607-887X, 2018, https://doi.org/10.1155/2018/5278095