KYUNGPOOK Math. J. 56(2016), 507-516
http://dx.doi.org/10.5666 /KMJ.2016.56.2.507
pISSN 1225-6951  eISSN 0454-8124

© Kyungpook Mathematical Journal

Behavior of Solutions of a Fourth Order Difference Equation

RAAFAT ABO-ZEID

Department of Basic Science, The Valley Higher Institute for Engineering € Tech-
nology, Cairo, Egypt

e-mail : abuzead73@yahoo.com

ABSTRACT. In this paper, we introduce an explicit formula for the solutions and discuss
the global behavior of solutions of the difference equation

aATn—3

:an:b n=20,1,...

)
— CTn—-1Tn-3
where a, b, c are positive real numbers and the initial conditions x_3,z_2,z_1,x¢ are real
numbers.

1. Introduction

Difference equations have played an important role in analysis of mathematical
models of biology, physics and engineering. Recently, there has been a great interest
in studying properties of nonlinear and rational difference equations. One can see
[3, 7,9, 10, 11, 12, 13, 14, 16, 17] and the references therein.

In [8], E.M. Elsayed determined the solutions to some difference equations. He
obtained the solution to the difference equation

Tp—3
(1.1) Tnt1 = 7 o 1ts’ n=20,1,...
where the initial conditions are arbitrary nonzero positive real numbers. But he
didn’t point to any constraints on the initial conditions.

In fact, if we start with initial conditions zg = 2,2_1 =1,z_5 =1,2_3 = 0.5 in
equation (1.1), then undefined value for z3 will be obtained. Therefore, additional
information about the initial conditions must be given for any solution of equation
(1.1) to be well-defined.

In [4], M. Alogeili discussed the stability properties and semicycle behavior of
the solutions of the difference equation

Tn—1

—, n=01,...
a4 — TpTn-1

Tn+1 =
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with real initial conditions and positive real number a.
In [1], we have discussed the oscillation, boundedness and the global behavior
of all admissible solutions of the difference equation

Amn—l

Tpy1 = —7—", n=01,...
n+ B—C$n$n727 s Ly

where A, B, C' are positive real numbers.
In [2], we have also discussed the oscillation, periodicity, boundedness and the
global behavior of all admissible solutions of the difference equation

Amn72r71
k )
B - CHi:l L —2i

T+l = n=20,1,...

where A, B, C are positive real numbers.
In [5], the authors investigated the asymptotic behavior of solutions of the
equation

ATp—1

Tn+1 = n:O,l,...

b+ cxnTn_1
with positive parameters a and ¢, negative parameter b and nonnegative initial
conditions.

In [6], they also used the explicit formula for the solutions of the equation

ATpn—1

Tn+1 = ’I’I,:O,l,...

b+ cxpnTn_1
with positive parameters and nonnegative initial conditions in investigating their
behavior.

In [15], H. Sedaghat determined the global behavior of all solutions of the ra-
tional difference equations

ATn—1 ATpTn—1

—_— Tyl = —————— n=201,...
xnxn,l—i—b’ n+ $n+b$n727 5y

Tn41 =
where a,b > 0.
In this paper, we introduce an explicit formula and discuss the global behavior
of solutions of the difference equation

ATn—3

(1.2) Tnt1 = 3 n=0,1,...

)
—CTp—-1Tn—3

where a, b, ¢ are positive real numbers and the initial conditions x_3,x_o, z_1, Zg
are real numbers.

2. Solution of Equation (1.2)

We define oy = x_oyx_gy4, 0 =1,2.
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Theorem 2.1. Let T_3,T_9,x_1 and xg be real numbers such that for any i €
{1,2}, o # Z” B SNl for alln € N. If a # b, then the solution {x,}2 _5 of

equation (1.2) is

n—1 b\275
(2) 70170
T—3 Hj:40 (2)2]+19 ,n= 175797"'
n—2 (by2j
(2)02—c
2 [[; % 7(2‘)‘2”192 - ,n=2,6,10,...
(2.1) Tp = n—s (g)2g+191_c
T—1 H_j:o (g)27+29170 7n:377a11a"'
n—4 ;%2541
1 (;) O2—c _
i) H]ZO W ,n—4,8, 12,
where 0; = %, O = T_o4iTqti, and i =1,2.
T
roof. We can write the given solution as
P W te th lut
o (9)%0, —c T (826, — ¢
Lam41 = I | b » o Tam42 = T2 I | Tbhvoitin
b 2_7+1 _ b\2i+1p,
=0 a 0 —c =0 (a) b2 —c
m (é)2j+191 —c m (é)2j+19 —c
a a
Tam+3 = T—1 I | bros 5 Tam+4 = Lo I | - 5 m = Oa 17
2§42 b\254-2
o (2)%%26, — ¢ 320 (2)27+20; — ¢

It is easy to check the result when m = 0. Suppose that the result is true for
m > 0. Then

)2j91 —C

- B AT g4m+1 B azr— 3HJ 0( )2a+191 c

4(m+1)+1 _b* CT 44 1Tdm 43 - b m (5)2791 c )27+191—c
— CTx_3 Hj:O (%)2j+191 C - HJ 0( )2i+20; —c

b\2j
m (2)7601—c
axr_—3 Hj:() (%)2_7‘+191_c

b— wag(l_[?:o(g)%% -z ]lj=, W

27
m ) 01—c
axr _ BHJ 0( )2J+101 c

b—cx_1z_3(0; — )((%)27717}&91_6)

) by2ig,
az_a((2)"20) — o) T[]y e

b((%)2m+291 —c¢) —cay(6; —¢)
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be m 1)2i9, —c
aa-a(3)2"201 = ) TT}Ly s
(P28, o) —cla b

T ((Q)Qm—&-Zel )H "o ( 12701 —c

a ( )2it10, —c
B8, — o) -
b

ala—b)
(g)2m+29 -9 1 (g)2j91 —¢
((2)2m+361 —¢) s (2)2j+191 —c

:x73

m—+1 (2)2]’91 —c

=T_3 -
o (%)2g+191 —c

Similarly we can show that

m+1 2]92 —c m+1 (Q)Qj-‘rlel —c
_ a
ZTa(m+1)+2 = T2 H 2]+19 o TamiD+s = T (5)2it20, — ¢
a =0 a
and )
N N m+ (3)2]+192 —c
4(m+1)+4 = 20 Thoiaon -
oo (3)27F202 —c
This completes the proof. O

3. Global Behavior of Equation (1.2)

In this section, we investigate the global behavior of equation (1.2) with a # b,
using the explicit formula of its solution.

We can write the solution of equation (1.2) a

Tam+2t+i = T4 2t4i H ¢, t,9),
i=0
. . ( )2ittg, —c
where C(],t,Z) = W te {0 1} and ¢ € {]. 2}

Theorem 3.1. Let {x,}52 _5 be a solution of equation (1.2) such that for any

1€ {1,2}, a; # —W for alln € N. If a; = I’_T“ for all i € {1,2}, then
k=0\"b

{zn}52 _5 is periodic with prime period 4.

Proof. Assume that o;; = 2= for all i € {1,2}. Then ¢; = 0 for all i € {1,2}.

Therefore,

m

Tamioryi = Toaporri | | SO 6 1) = 2 agoers, m=0,1,..
i=0

This completes the proof. O
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In the following Theorem, suppose that «; # b_T“ for all i € {1,2}.

Theorem 3.2. Let {z,}52 _5 be a solution of equation (1.2) such that for any
i€{1,2}, a; # W for allm € N. Then the following statements are true.
- k=0\b

1. If a < b, then {z,}5% _5 converges to 0.

2. If a > b, then {x,}22 _4 converges to a period-4 solution.

Proof.

L. If a < b, then ((j,t,i) converges to § < 1 as j — oo, for all t € {0,1}
and i € {1,2}. So, for every pair (¢,7) € {0,1} x {1,2} we have for a given
0 < e < 1 that, there exists jo(t,7) € N such that, | {(4,¢,i) |< € for all
J > jo(t,3). If we set jo = maxo<i<1,1<i<2jo(t,?), then for all ¢ € {0,1} and
i €{1,2} we get

m
| @amarsi | = 2—araryi || [[ Gt 0) |

=0
Jo—1 m

:| L—4+42t+i || H C(.jvtvi) || H C(jvt’i) |
Jj=0 J=jo
Jo—1

SESTTEN | RAR IR
=0

As m tends to infinity, the solution {z,}52 _5 converges to 0.

2. If a > b, then ((j,¢,4) — 1 as j — oo, t € {0,1} and ¢ € {1,2}. This
implies that, for every pair (¢,i) € {0,1} x {1,2}, there exists ji(¢,7) € N
such that ((j,¢,4) > 0 for all t € {0,1} and ¢ € {1,2}. If we set j; =
maxo<¢<1,1<i<2 J1 (t,i), then for all ¢ € {O, 1} and i € {1, 2} we get

m
Tamorri = Tasori | | CUits4)
=0
Ji—1 m
= T—4+42t+i H C(]a t, ’L) exXp ( Z ln(C(]v 2 Z)))
Jj=0 J=i1

We shall test the convergence of the series Z;’;jl | In({(j,¢,19)) |-

Since for all t € {0,1} and i € {1,2} we have lim;_,, | Wiﬁt)) =9,
using L’Hospital’s rule we obtain
In¢(j+1,t,1) b

li =(-)?<1.
Jfim | In¢(j,t,4) =G <
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It follows from the ratio test that the series Z;’i 5 [ C(j, ¢, 4) | is convergent.
This ensures that there are four positive real numbers p;, t € {0,1} and
i € {1,2} such that

li Tam+42t+i = i, € {0, 1} and i€ {1, 2}

m—r

where

o] (Q)Qj-i-tei —c )
Wi = x_4+2t+ijg0 W, t S {0, 1} and 1€ {1,2}

This completes the proof. O

Example (1) Figure 1. shows that if a =2, b =3, ¢ =1 (a < b), then the solution
{zn}52 _5 of equation (1.2) with initial conditions x_3 = 0.2, z_3 =2, z_; = —
and xy = 0.4 converges to 0.

Example (2) Figure 2. shows that if a = 3, b = 1, ¢ = 0.8 (@ > b), then the
solution {z,}52 _5 of equation (1.2) with initial conditions z_3 = 0.2, z_o = 2,
x_1 = —2 and xy = 0.4 converges to a period-4 solution.

[N
T

3xn73
1-0.8xp,—1Tn—3

2Tn—3

3 2, _1%n_3 Flgure 2: LT+l =

Figure 1: xp41 =

4. Case a=1b>

In this section, we investigate the behavior of the solution of the difference
equation

(3.1) Ty = —— =3 n=0,1,...

a4 — CTp_1Tp—3
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Theorem 4.1. Let x_3,x_5,x_1 and xg be real numbers such that for any i €
{1,2}, a; # gy Jor alln € N. Then the solution {xn}3L _5 of equation (3.1) is

a—(2j+1)cay

1 _a—(2j)ca .
(3.2) T, = v21l20 so@iness o =2,6,10,...
. n n—3 a—(2j+1)can
zllilo omaidear n=371L ..
a—(
a—(

T _a—(2f)can _
T_ 3HJ Xy o n=1,5,9, ...
n—2

—(2j+1)caz _
m ,n—4,8,12,...

Proof. The proof is similar to that of Theorem (2.1) and will be omitted. a

We can write the solution of equation (3.1) as

m

Tamorri = Toavori | | V0, 11),
i=0

where v(j,t,i) = %, t € {0,1} and i € {1,2}.
Theorem 4.2. Let {xn}n,% be a nontrivial solution of equation (3.1) such that
for any i € {1,2}, a; # cn+1) for alln € N. If a; = 0 for all i € {1,2}, then
{xn}52 _5 is periodic with prime period 4.

Proof. Assume that o; = 0 for all 7 € {1,2}. Then v(j,t,7) = 1 for all ¢ € {0,1}
and ¢ € {1,2}. Therefore,

m

Tamorri = Tavorri | [ V0, 61) = 2 ayarps, m=0,1,..
=0

This completes the proof. O
In the following Theorem, suppose that «; # 0 for all i € {1, 2}.

Theorem 4.3 Let {xn}2 _4 be a solution of equation (3.1) such that for any
i€{1,2}, a; # Gy for alln € N. Then {xn} _4 converges to 0.

Proof. Tt is clear that v(j,t,4) — 1 as j — oo, t € {0,1} and i € {1,2}. This
implies that, for every pair (¢,7) € {0,1} x {1,2} there exists ja(¢,7) € N such that,

then for all ¢ € {0,1} and 7 € {1,2} we get

m
Tamouri = Taporri | | 10 11)
5=0
J2—1
=x_ j,t,1) ex In
442t+i H v(J P ( Z j,t )

j=0 Jj=J2
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1 _ [ee]
We shall show that 377 1 NGy = D
ering the series Zj:j2 TEithe As

In(1/7(j,t,))

In

In((a— (2§ +t+1)ca;)/(a— (2] + t)eay))
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a—(2j+t+1)co;

a—(2jFt)ca; 00, by consid-

lim = lim - =1,
j—oo —cay/(a — (2§ +t))ea;  j—oo —cai;/(a— (2j + t)ca;)
using the limit comparison test, we get > °C s In ﬁ = 00.Then
J2—1 m
Tam+2t+i = L—d42t+i jl_[O v(jst, ) exp ( _Z j,t B
converges to 0 as m — oo. Therefore, {z,}72 _5 converges to 0. O

5. Casea=b=c

In this section, we investigate the behavior of the solution of the difference

equation

Tp—3

3.3 R
( ) 1- Tpn-1Tn—3 '

Tn+1 =

n=0,1,...

Theorem 5. 1 Let x_3,x_o,x_1 and xg be real numbers such that for any i €

{1,2}, i # n+1 for alln € N. Then the solution {x,}>2 _4 of equation (3.3) is
2 1—(2))an
x_?)l_‘[jjo % ’n:1’559,~-~
n=2 900
(3.4) Ty = ””HJ o% ,n=2,6,10, ...
' " 1—(2j+1)o
T 1H] 0 % ,n=23,711,..
n—4 7(2J+1)a2
1]l 20 marmer n=4812 ..
Proof. The proof is similar to that of Theorem (2.1) and will be omitted. O

Theorem 5.2. Let {mn};f;% be a nontrivial solution of equation (3.3) such that

forany i € {1,2}, a; # 02717
{zn}52 _5 is periodic with prime period 4.

€35 foralln e N. If a; = 0 for alli € {1,2}, then

Proof. Assume that a; = 0 for all ¢ € {1,2}. Then

Tqgm+2t+i = T—44-2t+1i5

This completes the proof.

m=20,1,...

In the following Theorem, suppose that «; # 0 for all i € {1,2}.

Theorem 5.3. Let {x,}52 _5 be a solution of equation (3.3) such that for any

xS {1,2}, e 7%} 75

%_H for alln € N. Then {x,}52 _5 converges to 0.
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Tn—3
1—zp_17n—3

Tn—3

Flgure 3: T+l = 1152, _10n_3

Figure 4: zp41 =

Example (3) Figure 3. shows that if a = b = 1, ¢ = 1.5, then the solution
{zn}52 _5 of equation (3.1) with initial conditionsz_3 =5, x_9 = —1, 1 = 1.3
and x¢p = —1.1 converges to 0.

Example (4) Figure 4. shows that if a = b = ¢, then the solution {z,}52 _5 of
equation (3.3) with initial conditions z_3 =5, x_9 =1, 27 = 1.3 and o = —1.1
converges to 0.
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