References
- A. Ali, N. Rehman and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar., 101(1-2)(2003), 79-82. https://doi.org/10.1023/B:AMHU.0000003893.61349.98
- K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996.
- H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53(1989), 339-346. https://doi.org/10.1007/BF01953371
- J. Bergen and L. Carini, A note on derivations with power central values on a Lie ideal, Pacific J. Math., 132(2)(1988), 209-213. https://doi.org/10.2140/pjm.1988.132.209
- C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(1988), 723-728. https://doi.org/10.1090/S0002-9939-1988-0947646-4
- C. L. Chuang, Hypercentral derivations, J. Algebra, 166(1)(1994), 34-71. https://doi.org/10.1006/jabr.1994.1140
- V. De Filippis, Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc., 45(2008), 621-629.
- T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60(1)(1975), 49-63. https://doi.org/10.2140/pjm.1975.60.49
- I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, 1969.
- I. N. Herstein, Derivations of prime rings having power central values, Algebraist's Homage. Contemporary Mathematics. Vol. 13, Amer. Math. Soc., Providence, Rhode Island, 1982.
- N. Jacobson, Structure of Rings, Colloquium Publications Vol. XXXVII, Amer. Math. Soc., 190 Hope street, Provindence, R. I., 1956.
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math., 90(1968), 1067-1073. https://doi.org/10.2307/2373290
- V. K. Kharchenko, Differential identities of prime rings, Algebra Logic, 17(2)(1979), 155-168. https://doi.org/10.1007/BF01670115
- C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118(1993), 731-734. https://doi.org/10.1090/S0002-9939-1993-1132851-9
- T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin., 20(1)(1992), 27-38.
- P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sin., 23(1)(1995), 1-5.
- W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12(4)(1969), 576-584. https://doi.org/10.1016/0021-8693(69)90029-5
- M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math., 57(1991), 469-474. https://doi.org/10.1007/BF01246745
- M. Mathieu and V. Runde, Derivations mapping into the radical II, Bull. Lond. Math. Soc., 24(1992), 485-487. https://doi.org/10.1112/blms/24.5.485
- K. H. Park, On derivations in noncommutative semiprime rings and Banach algebras, Bull. Korean Math. Soc., 42 (2005), 671-678. https://doi.org/10.4134/BKMS.2005.42.4.671
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8(1958), 1093-1100.
- A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc., 20(1969), 166-170. https://doi.org/10.1090/S0002-9939-1969-0233207-X
- I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann., 129(1955), 260-264. https://doi.org/10.1007/BF01362370
- M. P. Thomas, The image of a derivation is contained in the radical, Ann. Math., 128(2)(1988), 435-460. https://doi.org/10.2307/1971432
- Y. Wang and H. You, Derivations as homomorphisms or anti-homomorphisms on Lie ideals, Acta Math. Sinica., 23(6)(2007), 1149-1152. https://doi.org/10.1007/s10114-005-0840-x