DOI QR코드

DOI QR Code

Analysis of Influential Factors on Ploughing Failure of Footwall Slope

Footwall 비탈면의 ploughing 파괴에 미치는 영향인자 분석

  • 문준식 (경북대학교 건설환경에너지공학부) ;
  • 박우정 ((주)삼보기술단 지반사업본부)
  • Received : 2016.01.12
  • Accepted : 2016.06.07
  • Published : 2016.08.01

Abstract

The limit equilibrium method (LEM) is commonly used for slope design and stability analysis because it is easy to simulate slope and requires short calculating time. However, LEM cannot adequately simulate ploughing failure in a footwall slope with a joint set dipping parallel with slope, e.g. bedding joint set. This study performed parametric study to analyze the influence factors on ploughing failure using UDEC which is a commercial two-dimensional DEM (Distinct Element Method)-based numerical program. The influence of joint structure and properties on stability of a footwall slope against ploughing failure was investigated, and the factor of safety was estimated using the shear strength reduction method. It was found that the stability of footwall slope against ploughing failure strongly relies on dip angle of conjugate joint, and the critical bedding joint spacing and the critical length of slab triggering ploughing failure are also affected by dip angle of conjugate joint. The results obtained from this study can be used for effective slope design and construction including reinforcement.

풋월 비탈면 설계 시 해석시간이 짧고, 간편하여 한계평형법을 주로 이용하였으나, 쟁기형태파괴를 모사하기에는 어려움이 따른다. 따라서, 본 연구에서는 2차원 DEM (Distinct Element Method) 해석프로그램인 UDEC을 이용해 수치해석을 수행하여 풋월 비탈면에서 발생되는 쟁기형태파괴에 미치는 영향인자를 분석하였다. 매개변수분석은 암반절리(층면절리, 공액절리, 비탈면의 하단에 위치한 절리)의 구조 및 암반절리상태 등을 변경하여 수행하였으며, 비탈면의 안전율은 강도감소법(Strength Reduction Method)을 이용하여 산정하였다. 수치해석 결과를 통해 쟁기형태파괴는 공액절리(conjugate joint)의 경사각에 주로 의존하고 있음을 확인할 수 있었으며, 층리의 한계간격 및 슬래브의 한계길이가 공액절리의 경사각에 영향을 받는 것으로 나타났다. 본 연구결과는 비탈면 보강을 포함한 풋월 비탈면의 최적설계 및 시공에 적용될 수 있을 것으로 판단된다.

Keywords

References

  1. Adhikary, D. P., Mühlhaus, H. and Dyskin, A. V. (2001). "A numerical study of flexural buckling of foliated rock slopes." International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 25, No. 9, pp. 871-884. https://doi.org/10.1002/nag.157
  2. Alejano, L. R., Ferrero, A. M., Ramirez-Oyanguren, P. and Alvarez Fernandez, M. I. (2011). "Comparison of limit-equilibrium, numerical and physical models of wall slope stability." International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 1, pp. 16-26. https://doi.org/10.1016/j.ijrmms.2010.06.013
  3. Cavers, D. S. (1981). "Simple methods to analyze buckling of rock slopes." Rock Mechanics Felsmechanik Mécanique des Roches, Vol. 14, No. 2, pp. 87-104. https://doi.org/10.1007/BF01239857
  4. Cruden, D. M. (1985). "Rock slope movements in the Canadian Cordillera." Canadian Geotechnical Journal, Vol. 22, No. 4, pp. 528-540. https://doi.org/10.1139/t85-073
  5. Dawson, E. M., Roth, W. H. and Drescher, A. (1999). "Slope Stability Analysis by Strength Reduction." Geotechnique, Vol. 49, No. 6, pp. 835-840. https://doi.org/10.1680/geot.1999.49.6.835
  6. Dawson, R. F., Bagnall, A. S. and Barron, K. (1995). "Rock anchor support systems at Smoky River Coal Limited." CIM Bulletin, Vol. 88, No. 992, pp. 60-65.
  7. Froldi, P. and Lunardi, P. (1995). "Buckling failure phenomena and their analysis." Mechanics of Jointed and Faulted Rock, Balkema, pp. 595-604.
  8. Giani, G. P. (1992). Rock slope stability analysis, CRC Press (in USA).
  9. Havaej, M., Stead, D., Eberhardt, E. and Fisher, B. (2014). "Characterization of bi-planar and ploughing failure mechanisms in footwall slopes using numerical modelling." Engineering Geology, Vol. 178, pp. 109-120. https://doi.org/10.1016/j.enggeo.2014.06.003
  10. Hawley, P. M., Martin, D. C. and Acott, C. P. (1986). "Failure mechanics and design considerations for footwall slopes." CIM Bulletin, Vol. 79, No. 896, pp. 47-53.
  11. Hu, X. and Cruden, D. M. (1993). "Buckling deformation in the Highwood Pass, Alberta, Canada." Canadian Geotechnical Journal, Vol. 30, No. 2, pp. 276-286. https://doi.org/10.1139/t93-023
  12. ITASCA consulting Group, Inc. (2014). Universal distinct element code, user's manual, Version 6.0, Minneapolis, Minnesota (in USA).
  13. Kutter, H. K. (1974). "Mechanism of slope failure other than pure sliding." International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Vol. 13, No. 5, p. 54.
  14. Pant, S. and Adhikary, D. (1999). "Implicit and explicit modelling of flexural buckling of foliated rock slopes." Rock Mechanics and Rock Engineering, Vol. 32, No. 2, pp. 157-164. https://doi.org/10.1007/s006030050029
  15. Pereira, L. C. and Lana, M. S. (2013). "Stress-Strain Analysis of Buckling Failure in Phyllite Slopes." Geotechnical and Geological Engineering, Vol. 31, No. 1, pp. 297-314. https://doi.org/10.1007/s10706-012-9556-8
  16. Qi, S., Lan, H. and Dong, J. (2015). "An analytical solution to slip buckling slope failure triggered by earthquake." Engineering Geology, Vol. 194, pp. 4-11. https://doi.org/10.1016/j.enggeo.2014.06.004
  17. Qin, S., Jiao, J. J. and Wang, S. (2001). "A cusp catastrophe model of instability of slip-buckling slope." Rock Mechanics and Rock Engineering, Vol. 34, No. 2, pp. 119-134. https://doi.org/10.1007/s006030170018
  18. Seijmonsbergen, A. C., Woning, M. P., Verhoef, P. N. W. and de Graaff, L. W. S. (2005). "The failure mechanism of a late glacial sturzstrom in the subalpine molasse (Leckner Valley, Vorarlberg, Austria)." Geomorphology, Vol. 66, No. 1, pp. 277-286. https://doi.org/10.1016/j.geomorph.2004.09.016
  19. Serra de Renobales, T. (1987). "Strata buckling in footwall slopes in coal mining." Proc. of 6th Int. Conf. on Rock Mechanics., ISRM, Montreal, Canada, pp. 527-531.
  20. Silva, C. H. C. and Lana, M. S. (2014). "Numerical modeling of buckling failure in a mine slope." Revista Escola de Minas, Escola de Minas, Vol. 67, No. 1, pp. 81-86. https://doi.org/10.1590/S0370-44672014000100012
  21. Stead, D. and Eberhardt, E. (1997). "Developments in the analysis of footwall slopes in surface coal mining." Engineering Geology, Vol. 46, No. 1, pp. 41-61. https://doi.org/10.1016/S0013-7952(96)00084-1
  22. Tommasi, P., Campedel, P., Consorti, C. and Ribacchi, R. (2008). "A discontinuous approach to the numerical modelling of rock avalanches." Rock Mechanics and Rock Engineering, Vol. 41, No. 1, pp. 37-58. https://doi.org/10.1007/s00603-007-0133-z
  23. Tommasi, P., Verrucci, L., Campedel, P., Veronese, L., Pettinelli, E. and Ribacchi, R. (2009). "Buckling of high natural slopes: The case of Lavini di Marco (Trento-Italy)." Engineering Geology, Vol. 109, No. 1-2, pp. 93-108. https://doi.org/10.1016/j.enggeo.2009.02.002
  24. Wang, W., Chigira, M. and Furuya, T. (2003). "Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in Central Taiwan." Engineering Geology, Vol. 69, No. 1-2, pp. 1-13. https://doi.org/10.1016/S0013-7952(02)00244-2