• Title/Summary/Keyword: Buckling failure

Search Result 400, Processing Time 0.026 seconds

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.

Torsional Buckling Behavior of Composite Cylinder (복합재 실린더의 비틀림 좌굴 특성 연구)

  • 이춘우;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.92-95
    • /
    • 2002
  • A nonlinear finite element method is presented to evaluate the torsional buckling moment and failure of composite laminated cylinders. For the progressive failure analysis, the complete unloading method is used based on the maximum stress failure criteria. An arc-length method is incorporated to trace the postbuckling equilibrium path. Present finite element method is verified by the existing experimental and analytical results. The results of the parametric study show that the torsional buckling moments are sensitive to the geometric change, but are not much affected by the lay-up angle. All cylinders tested numerically show the unstable torsional buckling, and therefore the torsional buckling always leads to the catastrophic failure.

  • PDF

Analysis of Failure Behavior of Pile Embedded in Liquefiable Soil Deposits considering Buckling Instability (좌굴을 고려한 액상화 지반에 근입된 말뚝의 파괴거동 분석)

  • Han, Jin-Tae;Cho, Chong-Suck;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.105-112
    • /
    • 2006
  • Liquefaction-induced lateral spreading has been the most extensive damage to pile foundations during earthquakes. However, a case of pile failure was reported despite the fact that a large margin of safety factor was employed in their design. This means that the current seismic design method of pile is not agreeable with the actual failure mechanism of pile. Newly proposed failure mechanism of pile is a pile failure based on buckling instability. In this study, failure behavior of pile embedded in liquefied soil deposits was analyzed considering lateral spreading and buckling instability performing 1g shaking table test. As a result, it can be concluded that the pile subjected to excessive axial loads ($near\;P_{cr}$) can fail by buckling instability during liquefaction. When lateral spreading took place in sloping grounds, lateral spreading increased lateral deflection of pile and reduced the buckling load, promoting more rapid collapse. In addition, buckling shape of pile was observed. In the ease of pile buckling, hinge formed at the middle of the pile, not at the bottom. And in sloping grounds, location of hinge got loiter compared with level ground because of the effects of lateral spreading.

  • PDF

An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory

  • Zhihong Zhang;Pengyu Wu;Fuchu Dai;Renjiang Li;Xiaoming Zhao;Shu Jiang
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Buckling failure is one of the classical types of catastrophic landslides developing on inclination-paralleled rock slopes, which is mainly governed by its self-weight, earthquake and ground water. However, nearly none of the existing studies fully consider the influence of slope self-weight, earthquake and ground water on the mechanical model of buckling failure. In this paper, based on energy equilibrium principle and elastoplastic slab theory, a thorough mechanical analysis on bucking slopes has been carried out. Furthermore, an analytical solution for slip bucking failure of rock slopes has been proposed, which fully considers the effect of slope self-weight, seismic force and hydrostatic pressure. Finally, the methodology is used to conduct comparative analysis with other analytical solutions for three practical buckling studies. The results show that the proposed approach is capable of providing a more accurate and reasonable evaluation for stability of rock slopes with potential buckling failure.

A Study on Shape Optimization for Buckling and Postbuckling Behavior of Stiffened Laminated Composite Panels (보강된 복합적층 패널의 좌굴 및 좌굴후 거동의 형상 최적설계에 관한 연구)

  • Lee, Gwang-Rok;Jeong, Gi-Hyeon;Heo, Seong-Pil;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.106-114
    • /
    • 2001
  • In this study, a shape optimization of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, the effects of relative length of web and cab of stiffener on buckling load or failure load of postbuckling were investigated.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under uniaxial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • This paper deals with the buckling and postbuckling responses and the progressive failure of square symmetric laminates with rectangular cutouts under uniaxial compression. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on prebuckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling load, failure loads, failure modes and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without cutout have also been presented. It is concluded that square laminates with small square cutouts have more postbuckling strength than without cutout, irrespective of boundary conditions.

Effect of crack location on buckling analysis and SIF of cracked plates under tension

  • Memarzadeh, Parham;Mousavian, Sayedmohammad;Ghehi, Mohammad Hosseini;Zirakian, Tadeh
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.215-235
    • /
    • 2020
  • Cracks and defects may occur anywhere in a plate under tension. Cracks can affect the buckling stability performance and even the failure mode of the plate. A search of the literature reveals that the reported research has mostly focused on the study of plates with central and small cracks. Considering the effectiveness of cracks on the buckling behavior of plates, this study intends to investigate the effects of some key parameters, i.e., crack size and location as well as the plate aspect ratio and support conditions, on the buckling behavior, stress intensity factor (SIF), and the failure mode (buckling or fracture) in cracked plates under tension. To this end, a sophisticated mathematical code was developed using MATLAB in the frame-work of extended finite element method (XFEM) in order to analyze the buckling stability and collapse of numerous plate models. The results and findings of this research endeavor show that, in addition to the plate aspect ratio and support conditions, careful consideration of the crack location and size can be quite effective in buckling behavior assessment and failure mode prediction as well as SIF evaluation of the cracked plates subjected to tensile loading.

Debonding and Postbuckling Failure Characteristics of Composite Stiffened Panels (복합재 보강패널의 분리파손 및 좌굴 후 강도 특성)

  • Kim, Kwang-Soo;Yoo, Jae-Seok;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.59-63
    • /
    • 2005
  • Compression tests were performed for six types of hat stiffened composite panels with different bonding methods and stiffener section shapes. Six panels showed similar behaviors in buckling and post-buckling region before a skin-stiffener separation failure occurred. The skin-stiffener separation failures occurred in the panels with closed type stiffeners regardless of bonding methods, but not in the panels with open type stiffeners. The separation failures not only reduced the postbuckling strength but also changed buckling mode and postbuckling stiffness. All the separation failures were initiated at the stiffener flange edges closest to skin buckling crests. The co-cured or secondary bonded panels with open type stiffeners had the largest structural performance. Because the post-buckling strength and performance of the composite stiffened panels are reduced by the separation failure, it is important to find bonding methods, stiffener types and manufacturing parameters for preventing of the separation failure.

  • PDF