Acknowledgement
Supported by : National Research Foundation of Korea (NRF), Ministry of Land, Infrastructure and Transport (MOLIT)
References
- ASTM (2012), ASTM C109 - Standard test method for compressive strength of hydraulic cement mortars, West Conshohocken.
- ASTM (2013), ASTM C642 - Standard test method for density, absorption, and voids in hardened concrete, West Conshohocken.
- Azhari, F. and Banthia, N. (2012), "Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing", Cement Concrete Comp., 34, 866-873. https://doi.org/10.1016/j.cemconcomp.2012.04.007
- Banthia, N., Djeridane, S. and Pigeon, M. (1992), "Electrical resistivity of carbon and steel micro-fiber reinforced cements", Cement Concrete Res., 22, 804-814. https://doi.org/10.1016/0008-8846(92)90104-4
- Cao, J. and Chung, D.D.L. (2004), "Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement", Cement Concrete Res., 34, 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003
- Chung, D.D.L. (2012), "Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing", Carbon, 50(9), 3342-3353. https://doi.org/10.1016/j.carbon.2012.01.031
- Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20, 445501(5pages) https://doi.org/10.1088/0957-4484/20/44/445501
- Han, B., Yu, X. and Ou, J. (2010), "Effect of water content on the piezoresistivity of MWNT/cement composites", J. Mater. Sci., 45(14), 3714-3719. https://doi.org/10.1007/s10853-010-4414-7
- Hu, N., Karube, Y., Yan, C., Masuda, Z. and Fukunaga, H. (2008), "Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor", Acta Mater., 56(13), 2929-2936. https://doi.org/10.1016/j.actamat.2008.02.030
- Jeon, J.H. (2012), "An experimental study on electrical resistance behavior of carbon nanotube/cement composite", Master thesis, Korea Advanced Institute of Science and Technology, Dae-jeon.
- Kakooei, S., Akil, H.M., Jamshidi, M. and Rouhi, J. (2012), "The effects of polypropylene fibers on the properties of reinforced concrete structures", Constr. Build. Mater., 27(1), 73-77. https://doi.org/10.1016/j.conbuildmat.2011.08.015
- Kang, I., Schulz, M.J., Kim, J.H., Shanov, V. and Shi, D. (2006), "A carbon nanotube strain sensor for structural health monitoring", Smart Mater. Struct., 15(3), 737-748. https://doi.org/10.1088/0964-1726/15/3/009
- Kendall, K., Howard, A.J., Birchall, J.D., Pratt, P.L., Proctor, B.A. and Jefferis, S.A. (1983), "The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials", Philos. T. R. Soc. A, 310(1511), 139-153. https://doi.org/10.1098/rsta.1983.0073
- Kim, H.K., Nam, I.W. and Lee, H.K. (2014a), "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume", Compos. Struct., 107, 60-69. https://doi.org/10.1016/j.compstruct.2013.07.042
- Kim, H.K., Park, I.S. and Lee, H.K. (2014b), "Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio", Compos. Struct., 116, 713-719. https://doi.org/10.1016/j.compstruct.2014.06.007
- Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C. and Yoon, H.G. (2005), "Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites", Carbon, 43(1), 23-30. https://doi.org/10.1016/j.carbon.2004.08.015
- Li, C. and Chou, T.W. (2008), "Modeling of damage sensing in fiber composites using carbon nanotube networks", Compos. Sci. Technol., 68(15-16), 3373-3379. https://doi.org/10.1016/j.compscitech.2008.09.025
- Li, G.Y., Wang, P.M. and Zhao, X. (2007), "Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites", Cement Concrete Comp., 29, 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
- Li, H., Xiao, H. and Ou, J. (2004), "A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials", Cement Concrete Res., 34, 435-438. https://doi.org/10.1016/j.cemconres.2003.08.025
- Li, H., Xiao, H. and Ou, J. (2006), "Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites", Cement Concrete Comp., 28(9), 824-828. https://doi.org/10.1016/j.cemconcomp.2006.05.004
- Lu, K.L., Lago, R.M., Chen, Y.K., Green, M.L.H., Harris, P.J.F. and Tsang, S.C. (1996), "Mechanical damage of carbon nanotubes by ultrasound", Carbon, 34(6), 814-816. https://doi.org/10.1016/0008-6223(96)89470-X
- Luo, J., Duan, Z., Zhao, T. and Li, Q. (2011), "Hybrid effect of carbon fiber on piezoresistivity of carbon nanotube cement-based composite", Adv. Mater. Res., 143-144, 639-643.
- Lutwyche, M.I. and Wada, Y. (1995) "Observation of a vacuum tunnel gap in a transmission electron microscope using a micromechanical tunneling microscope", Appl. Phys. Lett., 66(21), 2807-2809. https://doi.org/10.1063/1.113482
- Nam, I.W., Lee, H.K., Sim, J.B. and Choi, S.M. (2012), "Electromagnetic characteristics of cement matrix materials with carbon nanotubes", ACI Mater. J., 109(3), 363-370.
- Park, J.M., Kim, P.G., Jang, J.H., Wang, Z., Kim, J.W., Lee, W.I., Park, J.G. and DeVries, K.L. (2008), "Self-sensing and dispersive evaluation of single carbon fiber/carbon nanotube (CNT)-epoxy composites using electro-micromechanical technique and nondestructive acoustic emission", Compos. Part B-Eng., 39, 1170-1182. https://doi.org/10.1016/j.compositesb.2008.03.004
- Sanches, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69, 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006
- SEMI (2005), SEMI MF 43 - Standard test methods for resistivity of semiconductor materials, San Jose.
- Souri, H., Nam, I.W. and Lee, H.K. (2015), "Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials", Compos. Sci. Technol., 121, 41-48. https://doi.org/10.1016/j.compscitech.2015.11.003
- Wen, W. and Chung, D.D.L. (2001), "Carbon fiber-reinforced cement as a strain-sensing coating", Cement Concrete Res., 31, 665-667. https://doi.org/10.1016/S0008-8846(01)00474-4
- Wood, J.R., Zhao, Q., Frogley, M.D., Meurs, E.R., Prins, A.D., Peljs, T., Dunstan, D.J. and Wagner, H.D. (2000), "Carbon nanotube: from molecular to macroscopic sensors", Phys. Rev. B, 62, 7571. https://doi.org/10.1103/PhysRevB.62.7571
- Xie, P., Gu, P. and Beaudoin, J.J. (1996), "Electrical percolation phenomena in cement composites containing conductive fibres", J. Mater. Sci., 31, 4093-4097. https://doi.org/10.1007/BF00352673
- Yap, S.P., Alengaram, U.J. and Jumaat, M.Z. (2013), "Enhancement of mechanical properties in polypropylene-and nylon-fibre reinforced oil palm shell concrete", Mater. Design, 49, 1034-1041. https://doi.org/10.1016/j.matdes.2013.02.070
- Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 0550109(5pages)
- Zhao, Q., Frogley, M.D. and Wagner, H.D. (2001), "The use of carbon nanotubes to sense matrix stresses around a single glass fiber", Compos. Sci. Technol., 61(14), 2139-2143. https://doi.org/10.1016/S0266-3538(01)00166-X
Cited by
- Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.07.008
- Flexural stress and crack sensing capabilities of MWNT/cement composites vol.175, 2017, https://doi.org/10.1016/j.compstruct.2017.04.078
- Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites vol.165, 2018, https://doi.org/10.1016/j.conbuildmat.2017.12.205
- Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective vol.0, pp.0, 2018, https://doi.org/10.1515/revce-2018-0007
- Electrical conductivity of the graphene nanoplatelets coated natural and synthetic fibres using electrophoretic deposition technique vol.9, pp.3, 2018, https://doi.org/10.1080/19475411.2018.1476419
- Load transfer and energy absorption in transversely compressed multi-walled carbon nanotubes vol.6, pp.3, 2016, https://doi.org/10.12989/csm.2017.6.3.273
- Piezoresistive Load Sensing and Percolation Phenomena in Portland Cement Composite Modified with In-Situ Synthesized Carbon Nanofibers vol.9, pp.4, 2019, https://doi.org/10.3390/nano9040594
- State of the Art on Sensing Capability of Poorly or Nonconductive Matrixes with a Special Focus on Portland Cement-Based Materials vol.31, pp.11, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002901
- Smart Graphite–Cement Composite for Roadway-Integrated Weigh-In-Motion Sensing vol.20, pp.16, 2020, https://doi.org/10.3390/s20164518
- A Study on Mechanical Characteristics of Cement Composites Fabricated with Nano-Silica and Carbon Nanotube vol.11, pp.1, 2021, https://doi.org/10.3390/app11010152
- Nonlinear Behavior of Single Walled Carbon Nanotube Reinforced Aluminium Alloy Beam vol.69, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.69.89
- Electromagnetic Wave Shielding Properties of Amorphous Metallic Fiber-Reinforced High-Strength Concrete Using Waveguides vol.14, pp.22, 2016, https://doi.org/10.3390/ma14227052
- A Comparative Study on the Electrical and Piezoresistive Sensing Characteristics of GFRP and CFRP Composites with Hybridized Incorporation of Carbon Nanotubes, Graphenes, Carbon Nanofibers, and Graphi vol.21, pp.21, 2016, https://doi.org/10.3390/s21217291
- Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor vol.47, pp.None, 2022, https://doi.org/10.1016/j.jobe.2021.103816