References
- R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, and D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009), no. 1, Research Paper 117, 13 pp.
- N. Ashrafi, H. R. Maimani, M. R. Pournaki, and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), no. 8, 2851-2871. https://doi.org/10.1080/00927870903095574
- T. Asir and T. T. Chelvam, On the genus of generalized unit and unitary Cayley graphs of a commutative ring, Acta Math. Hungar. 142 (2014), no. 2, 444-458. https://doi.org/10.1007/s10474-013-0365-1
- M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
- J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244 Springer, New York, 2008.
- H. Chen, Related to Stable Conditions, World Scientic (Series in Algebra 11), Hakensack, NJ, 2011.
- A. K. Das, H. R. Maimani, M. R. Pournaky, and S. Yassemi, Nonplanarity of unit graphs and classification of the toroidal ones, Pacific J. Math. 268 (2014), no. 2, 371-387. https://doi.org/10.2140/pjm.2014.268.371
- E. Fuchs, Longest induced cycles in circulant graphs, Electron. J. Combin. 14 (2005), no. 1, Research Paper 52, 12 pp.
- K. Khashyarmanesh and M. R. Khorsandi, A generalization of the unit and unitary Cayley graphs of a commutative ring, Acta Math. Hungar. 137 (2012), no. 4, 242-253. https://doi.org/10.1007/s10474-012-0224-5
- D. Kiani and M. M. H. Aghaei, On the unitary Cayley graphs of a ring, Electron. J. Combin. 19 (2012), no. 2, Research paper 10, 10 pp.
- D. Kiani, M. M. H. Aghaei, Y. Meemark, and B. Suntornpoch, Energy of unitary Cayley graphs and gcd-graphs, Linear Algebra Appl. 435 (2011), no. 6, 1336-1343. https://doi.org/10.1016/j.laa.2011.03.015
- W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007), no. 1, Research Paper 45, 12 pp.
- T. Y. Lam, Bass's work in ring theory and projective modules, Algebra K-theory, groups, and education (New York, 1997), 83-124, Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999.
- T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc. 2001.
- X. Liu and S. Zhou, Spectral properties of unitary Cayley graphs of finite commutative rings, Electron. J. Combin. 19 (2012), no. 4, Research paper 13, 19 pp.
- H. R. Maimani, M. R. Pournaki, A. Tehranian, and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), no. 6, 997-1011. https://doi.org/10.1007/s13369-011-0096-y
- H. R. Maimani, M. R. Pournaki, and S. Yassemi, Necessary and sucient conditions for unit graphs to be Hamiltonian, Pacific J. Math. 249 (2011), no. 2, 419-429. https://doi.org/10.2140/pjm.2011.249.419
- P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995), no. 1, 124-127. https://doi.org/10.1006/jabr.1995.1236
- H. Su and Y. Zhou, On the girth of the unit graph of a ring, J. Algebra Appl. 13 (2014), no. 2, 1350082, 12 pp.
- D. B. West, Introduction to Graph Theory, second ed., Prentice-Hall, 2000.
Cited by
- Generalized unit and unitary Cayley graphs of finite rings pp.1793-6829, 2019, https://doi.org/10.1142/S0219498819500063