DOI QR코드

DOI QR Code

A REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS OF A FINITE RING

  • Received : 2015.07.27
  • Published : 2016.07.31

Abstract

Let R be a finite commutative ring with nonzero identity. We define ${\Gamma}(R)$ to be the graph with vertex set R in which two distinct vertices x and y are adjacent if and only if there exists a unit element u of R such that x + uy is a unit of R. This graph provides a refinement of the unit and unitary Cayley graphs. In this paper, basic properties of ${\Gamma}(R)$ are obtained and the vertex connectivity and the edge connectivity of ${\Gamma}(R)$ are given. Finally, by a constructive way, we determine when the graph ${\Gamma}(R)$ is Hamiltonian. As a consequence, we show that ${\Gamma}(R)$ has a perfect matching if and only if ${\mid}R{\mid}$ is an even number.

Keywords

References

  1. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, and D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009), no. 1, Research Paper 117, 13 pp.
  2. N. Ashrafi, H. R. Maimani, M. R. Pournaki, and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), no. 8, 2851-2871. https://doi.org/10.1080/00927870903095574
  3. T. Asir and T. T. Chelvam, On the genus of generalized unit and unitary Cayley graphs of a commutative ring, Acta Math. Hungar. 142 (2014), no. 2, 444-458. https://doi.org/10.1007/s10474-013-0365-1
  4. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
  5. J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244 Springer, New York, 2008.
  6. H. Chen, Related to Stable Conditions, World Scientic (Series in Algebra 11), Hakensack, NJ, 2011.
  7. A. K. Das, H. R. Maimani, M. R. Pournaky, and S. Yassemi, Nonplanarity of unit graphs and classification of the toroidal ones, Pacific J. Math. 268 (2014), no. 2, 371-387. https://doi.org/10.2140/pjm.2014.268.371
  8. E. Fuchs, Longest induced cycles in circulant graphs, Electron. J. Combin. 14 (2005), no. 1, Research Paper 52, 12 pp.
  9. K. Khashyarmanesh and M. R. Khorsandi, A generalization of the unit and unitary Cayley graphs of a commutative ring, Acta Math. Hungar. 137 (2012), no. 4, 242-253. https://doi.org/10.1007/s10474-012-0224-5
  10. D. Kiani and M. M. H. Aghaei, On the unitary Cayley graphs of a ring, Electron. J. Combin. 19 (2012), no. 2, Research paper 10, 10 pp.
  11. D. Kiani, M. M. H. Aghaei, Y. Meemark, and B. Suntornpoch, Energy of unitary Cayley graphs and gcd-graphs, Linear Algebra Appl. 435 (2011), no. 6, 1336-1343. https://doi.org/10.1016/j.laa.2011.03.015
  12. W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007), no. 1, Research Paper 45, 12 pp.
  13. T. Y. Lam, Bass's work in ring theory and projective modules, Algebra K-theory, groups, and education (New York, 1997), 83-124, Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999.
  14. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc. 2001.
  15. X. Liu and S. Zhou, Spectral properties of unitary Cayley graphs of finite commutative rings, Electron. J. Combin. 19 (2012), no. 4, Research paper 13, 19 pp.
  16. H. R. Maimani, M. R. Pournaki, A. Tehranian, and S. Yassemi, Graphs attached to rings revisited, Arab. J. Sci. Eng. 36 (2011), no. 6, 997-1011. https://doi.org/10.1007/s13369-011-0096-y
  17. H. R. Maimani, M. R. Pournaki, and S. Yassemi, Necessary and sucient conditions for unit graphs to be Hamiltonian, Pacific J. Math. 249 (2011), no. 2, 419-429. https://doi.org/10.2140/pjm.2011.249.419
  18. P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176 (1995), no. 1, 124-127. https://doi.org/10.1006/jabr.1995.1236
  19. H. Su and Y. Zhou, On the girth of the unit graph of a ring, J. Algebra Appl. 13 (2014), no. 2, 1350082, 12 pp.
  20. D. B. West, Introduction to Graph Theory, second ed., Prentice-Hall, 2000.

Cited by

  1. Generalized unit and unitary Cayley graphs of finite rings pp.1793-6829, 2019, https://doi.org/10.1142/S0219498819500063