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A REFINEMENT OF THE UNIT AND UNITARY CAYLEY

GRAPHS OF A FINITE RING

Ali Reza Naghipour and Meysam Rezagholibeigi

Abstract. Let R be a finite commutative ring with nonzero identity.

We define Γ(R) to be the graph with vertex set R in which two distinct
vertices x and y are adjacent if and only if there exists a unit element u

of R such that x + uy is a unit of R. This graph provides a refinement
of the unit and unitary Cayley graphs. In this paper, basic properties of

Γ(R) are obtained and the vertex connectivity and the edge connectivity

of Γ(R) are given. Finally, by a constructive way, we determine when the
graph Γ(R) is Hamiltonian. As a consequence, we show that Γ(R) has a

perfect matching if and only if |R| is an even number.

1. Introduction

Throughout this paper, R is a finite commutative ring with nonzero iden-
tity. The group of units and the Jacobson radical of R are denoted by U(R)
and J(R), respectively. The unit graph G(R) is the graph with vertex set R
in which two distinct vertices x and y are adjacent if and only if x + y ∈
U(R). Unit graphs were introduced in [2] and their properties were investi-
gated in [7], [16], [17] and [19]. The unitary Cayley graph GR is the graph with
vertex set R such that two distinct vertices x and y are adjacent if and only if
x− y ∈ U(R). Unitary Cayley graphs were introduced in [8] and their proper-
ties were investigated in [1], [10], [11], [12] and [15]. For example, in [10] the
chromatic number, clique number and independence number of GR are given
along with other results. The authors in [15] give a necessary and sufficient
condition for GR to be Ramanujan graph.

In [9], Khashayarmanesh and Khorsandi provide a generalization of the unit
and unitary Cayley graphs as follows: Let G be a multiplicative subgroup of
U(R) and S be a non-empty subset of G such that S−1 = {s−1 | s ∈ S} ⊆ S.
Then Γ(R,G, S) is the (simple) graph with vertex set R in which two distinct
elements x, y ∈ R are adjacent if and only if there exists s ∈ S such that x+sy ∈
G. The authors in [3] derive several bounds for the genus of Γ(R,U(R), S). In
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this paper, we use Γ(R) to denote the graph Γ(R,U(R), U(R)). For a subset
C of R, the induced subgraph of Γ(R) over C is denoted by Γ(C).

We recall that a ring R is said to have unit 1-stable range if, whenever
Rx+ Ry = R (x, y ∈ R), there exists u ∈ U(R) such that x+ uy ∈ U(R). We
refer the reader to [6] and [13] for more information about unit 1-stable range
rings.

In [18], Sharma and Bhatwadekar defined another graph on R, Ω(R), with
vertices the elements of R, in which two distinct vertices x and y are adjacent
if and only if Rx+Ry = R. It is easy to see that Γ(R) is a subgraph of Ω(R).
The concepts of Γ(R) and Ω(R) give an interesting graph interpretation of unit
1-stable range rings. In fact, a commutative ring R has unit 1-stable range if
and only if Γ(R) ∼= Ω(R). This provides a motivation to introduce and study
the properties of Γ(R).

For a graph G, V (G) and E(G) denote the vertex set and edge set of G,
respectively. A graph G is called a refinement of a graph H if V (G) = V (H)
and if x, y are adjacent in H, then x, y are adjacent in G. We mention that “G
is a refinement of H” has the same meaning as “H is a spanning subgraph of
G”. We note that Γ(R) is a refinement of both G(R) and GR. If we omit the
word “distinct”, we obtain the graph Γ(R); this graph may have loops. Some
examples of this kind of graphs are displayed in Figure 1.
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Figure 1. The graphs Γ(R) and Γ(R) of the specific rings R.
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For a local ring R, we have the following immediate result about the loops
of Γ(R).

Proposition 1.1. Let R be a local ring with maximal ideal m. Then

(1) If |R/m| = 2, then Γ(R) has no loop (i.e.,Γ(R) = Γ(R));
(2) If |R/m| 6= 2, then only the elements of U(R) have a loop in Γ(R).

A graph G in which each pair of distinct vertices is joined by an edge is called
a complete graph. We use Kn to denote the complete graph with n vertices.
For a graph G and vertex x ∈ V (G), the degree of x, denoted by deg(x), is the
number of edges of G incident with x. The minimum degree of G is denoted by
δ(G). For x ∈ V (G), we denote by NG(x) the set of all vertices of G adjacent
to x.

A graph G is called bipartite if V (G) admits a partition into two classes
such that vertices in the same partition class must not be adjacent. A simple
bipartite graph in which every two vertices from different partition classes are
adjacent is called a complete bipartite graph, denoted by Km,n, where m and
n are the sizes of the partition classes. A clique is a set of pairwise adjacent
vertices of G (any complete subgraph). The largest integer n such that Kn is
a subgraph of G is the clique number ω(G) of G. An independent set is a set
of pairwise non-adjacent vertices of G. A walk from x to y is an ordered list of
vertices (not necessarily distinct) x = v0, v1, . . . , vn−1, vn = y such that vi−1 is
adjacent to vi for i = 1, . . . , n. We denote this walk by x−−v1−− · · ·−−vn−1−−y.
A path of length n is an ordered list of distinct vertices v0, v1, . . . , vn−1, vn
such that vi−1 is adjacent to vi for i = 1, . . . , n. We denote this path by
v0−−v1−− · · ·−−vn−1−−vn. A cycle is a path v0−−v1−− · · ·−−vn−1−−vn with
an extra edge v0−−vn. The union of two simple graphs G and H is the graph
G ∪H with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). If V (G) and
V (H) are disjoint, we refer to G∪H as a disjoint union, and denote it by G+H.
The join of simple graphs G and H, written G∨H, is the graph obtained from
the disjoint union G + H by adding edges joining every vertex of G to every
vertex of H.

A Hamiltonian cycle in a graph G is a cycle containing every vertex of G
and G is called a Hamiltonian graph if it contains a Hamiltonian cycle. For
other notions not mentioned in this paper, one can refer to [4] and [20].

The plan of this paper is as follows: In Section 2, we give some basic proper-
ties of Γ(R). In Section 3, we determine the clique number of Γ(R). In Section
4, by a constructive way, we determine when the graph Γ(R) is Hamiltonian.
Finally, we determine when the graph Γ(R) has a perfect matching.

2. Basic properties of Γ(R)

In this section, we study some basic properties of Γ(R). We begin with the
following lemma.
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Lemma 2.1. Let R be a ring. Then each element of U(R) is adjacent to all
elements of J(R).

Proof. Let x ∈ U(R) and y ∈ J(R). Suppose on the contrary that x and y are
not adjacent. Then x + uy 6∈ U(R) for all u ∈ U(R), and so x − y 6∈ U(R).
Therefore there exists a maximal ideal m of R such that x−y ∈ m. This implies
that x ∈ m, which is a contradiction. This completes the proof. �

Let R be a ring with maximal ideal m such that |R/m| = 2. Then it is easy
to see that Γ(R) is a bipartite graph. In the next section, we show that the
converse of this result is also true (see Corollary 3.2).

In the following theorem, we determine when Γ(R) is a complete bipartite
graph.

Theorem 2.2. Let R be a ring with maximal ideal m such that |R/m| = 2.
Then Γ(R) is a complete bipartite graph if and only if R is a local ring.

Proof. Suppose that Γ(R) is a complete bipartite graph with bipartition {V1,
V2}. First we show that U(R) is an independent set of Γ(R). Suppose on
the contrary that U(R) is not an independent set of Γ(R). Then there exist
x, y ∈ U(R) such that x is adjacent to y. So, there exists u ∈ U(R) such that
x+ uy ∈ U(R). Since |R/m| = 2, there are m1,m2 ∈ m such that x = 1 +m1

and y = 1 + m2. This implies that 1 + m1 + u + um2 ∈ U(R). On the other
hand, 1+u ∈ m, because |R/m| = 2. Therefore we have 1+u+m1 +um2 ∈ m,
which is a contradiction. Since Γ(R) is a complete bipartite graph and U(R)
is an independent set of Γ(R), without loss of generality, we may assume that
U(R) ⊆ V1. We claim that V1 = U(R). Suppose on the contrary that there
exists v1 ∈ V1\U(R). Then there exists a maximal ideal n of R such that v1 ∈ n.
Since the distinct elements of a maximal ideal can not be adjacent, n ⊆ V1 and
so J(R) ⊆ n ⊆ V1, which is a contradiction, by the above lemma. Therefore,
V1 = U(R). It follows that m ⊆ V2. Now we show that V2 = m. Suppose on
the contrary that there exists v2 ∈ V2 \ m. Then v2 = 1 +m for some m ∈ m.
By the assumption, 1 is adjacent to v2, and hence there exists u0 ∈ U(R) such
that (1 +m) +u0.1 = 1 +m+u0 ∈ U(R). Hence 1 +m+u0 = 1 +m0 for some
m0 ∈ m. Therefore u0 = m0 −m, which is a contradiction. Thus V2 = m. It
follows that R is a local ring.

The converse follows easily from [9, Propostion 3.2]. �

If R is a local ring with maximal ideal m such that |R/m| = 2, then by the
above theorem deg(x) = |U(R)| for each x ∈ R. In the case where |R/m| > 2,
the following theorem determines the degree of vertices of Γ(R).

Theorem 2.3. Let R be a local ring with maximal ideal m such that |R/m| > 2
and let x ∈ R. Then

deg(x) =

{
|R| − 1 if x ∈ U(R),
|U(R)| otherwise.
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Proof. Let m, u1 +m, . . . , ut +m, be the set of all distinct cosets of R/m, where
ui ∈ U(R) for i = 1, . . . , t. Let xi ∈ ui +m and xj ∈ uj +m, where i, j are two
distinct elements of {1, . . . , t}. We claim that xi and xj are adjacent. Suppose
on the contrary that xi and xj are not adjacent. Therefore, ui +uuj ∈ m for all
u ∈ U(R) and so ui − uj ∈ m, which is a contradiction. Now let k ∈ {1, . . . , t}.
We show that every pair of elements of the coset uk +m are adjacent. Suppose
on the contrary that there exist two distinct elements m1,m2 ∈ m such that
uk +m1 and uk +m2 are not adjacent. Then (uk +m1)+u(uk +m2) ∈ m for all
u ∈ U(R). We conclude that uk(1 + u) ∈ m for all u ∈ U(R) and so 1− u ∈ m
for all u ∈ U(R). This implies that |R/m| = 2, which is a contradiction. It
is clear that the elements of ui + m are adjacent to the elements of m, for all
i = 1, . . . , t and also no pair of elements of m are adjacent. These observations
complete the proof. �

Theorem 2.4. Let R be a ring. Suppose that Γ(R) is a complete n-partite
graph. Then the following hold:

(1) R is a local ring;
(2) n = 2 or n = |U(R)|+ 1.

Proof. (1) Suppose that V is the part containing zero. We show that V =
R \ U(R). For any x ∈ V and any u ∈ U(R), we have ux 6∈ U(R). Therefore
V ⊆ R \ U(R). Now let y be an element of R \ U(R) such that y 6∈ V . So
y is adjacent to zero and hence uy ∈ U(R), for some u ∈ U(R). This yields
y ∈ U(R), which is a contradiction. Hence V = R \ U(R). Let m1,m2 be two
distinct maximal ideals of R. Then m1 +m2 = R and hence x+ y = 1 for some
x ∈ m1 and y ∈ m2. Therefore x and y are adjacent elements of V , which is a
contradiction. This implies that R is a local ring.

(2) First suppose that |R/m| = 2. Then n = 2, by Theorem 2.2. Now let
|R/m| > 2 and U(R) = {u1, . . . , ut}. For any 1 ≤ i ≤ t, we set Vi = {ui} and
Vt+1 = m. Therefore Γ(R) is a complete (t+ 1)-partite graph by Theorem 2.3.
This completes the proof. �

Theorem 2.5. Let R be a ring, with exactly two maximal ideal, say m1 and
m2. Then Γ(R) is connected if and only if |R/m1| 6= 2 or |R/m2| 6= 2.

Proof. Suppose that Γ(R) is not connected. In view of Lemma 2.1 and the
fact that every element of (m1 \m2) is adjacent to every element of (m2 \m1),
there are two components V1 and V2 of Γ(R) such that V1 = J(R) ∪U(R) and
V2 = (m1 \m2)∪(m2 \m1). We show that |R/m1| = 2. Suppose on the contrary
that |R/m1| 6= 2. So there exists x ∈ R \ m1 such that 1 − x 6∈ m1. Then
1 − x ∈ m2 \ m1 or 1 − x ∈ U(R). First suppose that 1 − x ∈ m2 \ m1. So
x 6∈ m2. Therefore x ∈ U(R) ⊆ V1 and 1− x ∈ V2, which is a contradiction.

Now suppose that 1 − x ∈ U(R). Then x 6∈ m2 \ m1, for otherwise 1 is
adjacent to x, which is a contradiction. Hence x ∈ U(R). Since R/m1 is a field,
there is v ∈ R\m1 such that 1−vx ∈ m1. We consider the following four cases:
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Case 1: 1− vx ∈ m1 \m2 and v ∈ U(R). In this case, we have vx+ (1− vx) ∈
U(R), which is a contradiction.
Case 2: 1− vx ∈ m1 \m2 and v ∈ m2 \m1. It follows that 1− v 6∈ U(R)∪m2,
and hence 1 − v ∈ m1 \ m2. Now we conclude that 1 − vx − 1 + v ∈ m1 and
therefore v(1− x) ∈ m1. Since 1− x is unit, we must have v ∈ m1, which is a
contradiction.
Case 3: 1 − vx ∈ J(R) and v ∈ m2 \ m1. Then it is clear that vx ∈ m2 \ m1.
But we have 1− vx+ vx ∈ U(R), which is a contradiction.
Case 4: 1−vx ∈ J(R) and v ∈ U(R). Let a be an arbitrary element of m1\m2.
Then we have a(1−x) + vx 6∈ U(R), since a(1−x) is not adjacent to v. Also if
a(1− x) + vx ∈ m1, then we conclude that vx ∈ m1, which is a contradiction,
and therefore a(1− x) + vx ∈ m2 \m1. Now according to the assumption that
1− vx ∈ J(R), we have

(2.1) 1 + a− ax ∈ m2 \m1.

Since 1 is not adjacent to a, we have 1− ax 6∈ U(R). Also if 1− ax ∈ m1 \m2,
we conclude that 1 ∈ m1 \ m2, which is a contradiction. So 1 − ax ∈ m2 \ m1.
By (2.1), we obtain a ∈ m2 \ m1, which is a contradiction. Hence the first
assumption is not true and therefore |R/m1| = 2. A similar argument shows
that |R/m2| = 2.

Conversely, let |R/m1| = |R/m2| = 2. It is enough to show that every
element of U(R) is not connected to elements of (m1 \ m2) ∪ (m2 \ m1). Let
z ∈ m1 \ m2 and u be an arbitrary element of U(R). Suppose on the contrary
that u is adjacent to z. Then u + vz ∈ U(R) for some v ∈ U(R). Since
|R/m1| = |R/m2| = 2, we have 1−u−vz ∈ m1∩m2. Also, since |R/m2| = 2, we
have 1−u ∈ m2. Hence vz ∈ m2 and therefore z ∈ m2, which is a contradiction.
A similar argument shows that every element of U(R) is not connected to
elements of m2 \m1. This completes the proof. �

Corollary 2.6. Let R = R1 × R2 × · · · × Rn be a ring such that Ri is a local
ring with maximal ideal mi. Then Γ(R) is connected if and only if R/J(R) has
at most one Z2 as a summand.

Proof. Suppose that R/J(R) has at least two Z2 as summands. Without loss
of generality, we may assume |R1/m1| = |R2/m2| = 2. Let S := R1 × R2. By
the above theorem Γ(S) is disconnected and therefore it is easy to see that
Γ(R) is disconnected. Conversely, suppose that R/J(R) has at most one Z2 as
a summand. Let (u1, . . . , un) ∈ U(R), m1 ∈ m1 and let X = (x1, . . . , xn) and
Y = (y1, . . . , yn) be arbitrary vertices of Γ(R). Put M := (m1, u2, . . . , un) and
U := (u1, . . . , un) such that U 6∈ {X,Y }. We consider the following two cases:
Case 1: |Ri/mi| > 2 for all 1 ≤ i ≤ n. Then, by Theorem 2.3, X−−U−−Y is
a path between X and Y . So Γ(R) is connected in this case.
Case 2: |R1/m1| = 2 and |Ri/mi| > 2 for all 2 ≤ i ≤ n. First suppose that
x1, y1 ∈ m1. Then X−−U−−Y is a path from X to Y . If x1, y1 ∈ U(R1), then
we have the path X−−M−−Y from X to Y . Now, suppose that x1 ∈ m1 and



THE UNIT AND UNITARY CAYLEY GRAPHS OF A FINITE RING 1203

y1 ∈ U(R1). In this case X−−U−−M−−Y is a path from X to Y . If x1 ∈ U(R1)
and y1 ∈ m1, a similar argument shows that X is connected to Y . Therefore
Γ(R) is connected. �

3. Clique number

The purpose of this section is to determine the clique number of Γ(R).

Theorem 3.1. Let R = R1×R2× · · · ×Rn be a ring, where Ri is a local ring
with maximal ideal mi. Then

ω(Γ(R)) =

{
2 if |Ri/mi| = 2 for some 1 ≤ i ≤ n,
|U(R)|+ n otherwise.

Proof. Let |Ri/mi| = 2 for some 1 ≤ i ≤ n. Then M := R1×· · ·×Ri−1×mi×
Ri+1 × · · · × Rn is a maximal ideal of R such that |R/M | = 2. Therefore the
remark before Theorem 2.2 implies that ω(Γ(R)) = 2.

Now suppose that |Ri/mi| > 2 for all 1 ≤ i ≤ n. We set:

Si := U(R1)× U(R2)× · · · × U(Ri−1)×mi ×Ri+1 × · · · ×Rn, (1 ≤ i ≤ n),

Sn+1 := U(R1)× U(R2)× · · · × U(Rn).

It is easy to see that Si

⋂
Sj = ∅ for all i 6= j, and

⋃i=n+1
i=1 Si = R. By Theorem

2.3 and Proposition 1.1, Sn+1 is a clique. Set

C := Sn+1 ∪ {(0, 1, 1, . . . , 1), (1, 0, 1, . . . , 1), (1, 1, . . . , 1, 0)}.

It is easy to see that C is a clique of Γ(R). Since Si(1 ≤ i ≤ n) is an independent
set, every clique of Γ(R) contains at most one element of Si (1 ≤ i ≤ n).
Therefore ω(Γ(R)) = |U(R1)| × |U(R2)| × · · · × |U(Rn)|+ n = |U(R)|+ n. �

Corollary 3.2. Let R be a ring such that Γ(R) is a bipartite graph. Then there
is a maximal ideal m of R such that |R/m| = 2.

Proof. Let R = R1 ×R2 × · · · ×Rn such that Ri is a local ring with maximal
ideal mi for 1 ≤ i ≤ n (see [4, Theorem 8.7]). Suppose on the contrary that for
all ideals of R, we have |R/m| > 2. Equivalently, |Ri/mi| > 2 for all 1 ≤ i ≤ n.
In view of Theorem 3.1, we conclude that

|U(R1)| × |U(R2)| × · · · × |U(Rn)|+ n = 2.

So we have n = 1 (i.e., R = R1) and |U(R1)| = 1. Suppose that |R| > 2. Let
x be an element of R such that x 6∈ {0, 1}. Then 1 + x 6∈ U(R) and x 6∈ U(R).
So 1 = (1 + x)− x ∈ m, which is a contradiction. Therefore |R| = 2 and hence
R = Z2, which is again a contradiction. This completes the proof. �
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4. Connectivity

In the following, we use κ(G) and κ′(G) to denote the vertex-connectivity
and edge-connectivity of a graph G, respectively. The local connectivity be-
tween distinct vertices x and y is the maximum number of pairwise internally
disjoint xy-paths, denoted by p(x, y) (see [5, Page 206]). We begin with the
following notation:

Notation. Let S = R1×· · ·×Rn, T = Rn+1×· · ·×Rm and R = S×T such that
Ri is ring for all 1 ≤ i ≤ m. Suppose that X = (x1, x2, . . . , xn, xn+1, . . . , xm) ∈
R, X̂ = (x1, x2, . . . , xn) ∈ S, Ŷ = (xn+1, . . . , xm) ∈ T . For convenience, we let
X denote one of the following expressions:

(X̂, Ŷ ),

(X̂, xn+1, . . . , xm),

(x1, x2, . . . , xn, Ŷ ).

Theorem 4.1. Let R = F1 × F2 × · · · × Fn be a ring such that Fi is field. If
Γ(R) is connected, then κ(Γ(R)) = κ′(Γ(R)) = δ(Γ(R)) = |U(R)|.

Proof. Since Γ(R) is connected, by Corollary 2.6, we have the following cases:
Case 1: |Fi| > 2 for all 1 ≤ i ≤ n. We decompose R to the subsets Si, as
defined in Theorem 3.1. Set S := S1 ∪ S2 ∪ · · · ∪ Sn. It is easy to see that
Γ(R) ∼= Γ(Sn+1) ∨ Γ(S). The vertex (0, 0, . . . , 0) ∈ S1 ⊆ S is an isolated ver-
tex in Γ(S) and therefore κ(S) = 0. Also we know that Γ(Sn+1) ∼= K|U(R)|
and hence κ(Γ(Sn+1)) = |U(R)| − 1. On the other hand, it is clear that
δ(Γ(R)) = deg((0, 0, . . . , 0)) = |U(R)|. By using [5, Exercises 9.1.2, 9.3.2],
we conclude that κ(Γ(R)) = κ′(Γ(R)) = δ(Γ(R)) = |U(R)|. The assertion is
proved.
Case 2: |F1| = 2 and |Fi| > 2 for all 2 ≤ i ≤ n. Let X := (x, x2, . . . , xn) and

Y := (y, y2, . . . , yn) be arbitrary distinct elements ofR. Let X̂ := (x2, . . . , xn) ∈
F2× · · · ×Fn and Ŷ := (y2, . . . , yn) ∈ F2× · · · ×Fn. We consider the following
four subcases:
Subcase 1. No entries of X̂ and Ŷ are equal to zero. Thus, X̂ and Ŷ are adja-

cent in Γ(F2×· · ·×Fn). Also for each A ∈ (F2 \ {0}× · · ·×Fn \ {0}) \ {X̂, Ŷ },
X̂−−A−−Ŷ is a path of length two between X̂ and Ŷ . The number of such
distinct A is (f2− 1) · · · (fn − 1)− 2. Now we consider the following two cases:
If x = y, we choose t ∈ Z2 \ {x} and construct the following pairwise internally
disjoint paths from X to Y :

X = (x, X̂)−−(t, A)−−Y = (x, Ŷ ),

X = (x, X̂)−−(t, X̂)−−Y = (x, Ŷ ),

X = (x, X̂)−−(t, Ŷ )−−Y = (x, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}) \ {X̂, Ŷ }.
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If x 6= y, we have the following pairwise internally disjoint paths:

X = (x, X̂)−−Y = (y, Ŷ ),

X = (x, X̂)−−(y,A)−−(x,A)−−Y = (y, Ŷ ),

X = (x, X̂)−−(y, X̂)−−(x, Ŷ )−−Y = (y, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}) \ {X̂, Ŷ }.
Hence, in this case, p(X,Y ) ≥ (f2−1) · · · (fn−1)−2+2 = |U(R)| = δ(Γ(R)).

Subcase 2. Both X̂ and Ŷ have at least one entry which is equal to zero. Then

for any A ∈ (F2 \ {0} × · · · × Fn \ {0}), X̂−−A−−Ŷ is a path from X̂ to Ŷ in
Γ(F2 × · · · × Fn). The number of such distinct A, and therefore such paths, is
(f2 − 1) · · · (fn − 1). We consider the following two cases:

If x = y, we construct the following paths from X to Y :

X = (x, X̂)−−(t, A)−−Y = (x, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}), t ∈ Z2 \ {x}.
If x 6= y, we provide the following internally disjoint paths:

X = (x, X̂)−−(y,A)−−(x,A)−−Y = (y, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}).
In this case we also deduce that p(X,Y ) ≥ (f2 − 1) · · · (fn − 1) = |U(R)| =

δ(Γ(R)).

Subcase 3. No entry of X̂ is equal to zero and at least one entry of Ŷ is zero.

Hence for any A ∈ (F2 \ {0}× · · · ×Fn \ {0}) \ {X̂}, X̂−−A−−Ŷ is a path from

X̂ to Ŷ . Note that X̂ has loop and also X̂ is adjacent to Ŷ . The number of
such A is (f2 − 1) · · · (fn − 1)− 1. We consider the following two cases:

If x = y, we provide the following paths from X to Y :

X = (x, X̂)−−(t, A)−−Y = (x, Ŷ ),

X = (x, X̂)−−(t, X̂)−−Y = (x, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}) \ {X̂}.
If x 6= y, we have the following paths from X to Y :

X = (x, X̂)−−(y,A)−−(x,A)−−Y = (y, Ŷ ),

X = (x, X̂)−−(y, X̂)−−(x, Ŷ )−−Y = (y, Ŷ ),

where A ∈ (F2 \ {0} × · · · × Fn \ {0}) \ {X̂}.
Therefore, p(X,Y ) ≥ (f2 − 1) · · · (fn − 1)− 1 + 1 = |U(R)| = δ(Γ(R)).

Subcase 4. No entry of Ŷ is equal to zero and at least one entry of X̂ is zero.
This subcase is similar to the previous subcase and so we omit the argument.
Hence, for every X,Y ∈ R, we have p(X,Y ) ≥ |U(R)| = δ(Γ(R)). This implies
that κ(Γ(R)) = δ(Γ(R)). This completes the proof. �

Let G be a connected graph. A non-empty subset S of vertices of G is called
a vertex cut if G − S (the removal of vertices of S from G) is not connected
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or has exactly one vertex. We note that by Menger’s Theorem, for a finite
connected graph G, κ(G) is equal to the minimum size of vertex cuts of G
(see [20, Theorem 4.2.21]).

Theorem 4.2. Let R be a ring. Then

κ(Γ(R)) = κ(Γ(R/J(R))|J(R)|.

Proof. Let κ(Γ(R/J(R)) = t and {b1 + J(R), b2 + J(R), . . . , bt + J(R)} be
a vertex cut of Γ(R/J(R)). Then, by [14, Proposition 4.8], it is not hard

to see that
⋃i=t

i=1 bi + J(R) is a vertex cut of Γ(R). Therefore κ(Γ(R)) ≤
κ(Γ(R/J(R))|J(R)|.

Let κ(Γ(R)) = n and C be a vertex cut of Γ(R) such that |C| = n. We

claim that C =
⋃i=m

i=1 ai + J(R) for some ai ∈ R. Let a+ j ∈ C, where a ∈ R
and j ∈ J(R). We show that a + J(R) ⊆ C. Suppose on the contrary that
a+ j0 6∈ C for some j0 ∈ J(R). Since C is a vertex cut, there are x, y ∈ R such
that x is not connected to y in Γ(R)\C. On the other hand, Γ(R)\(C \{a+j})
is a connected graph. So we have the following walk in Γ(R) \ (C \ {a+ j}):

x = x1−−x2−− · · ·−−xi−1−−(a+ j)−−xi−− · · ·−−xn = y,

where xi ∈ G \C. Since a+ j0 6∈ C and NΓ(R)(a+ j) = NΓ(R)(a+ j0), we have
the following walk in Γ(R) \ C:

x = x1−−x2−− · · ·−−xi−1−−(a+ j0)−−xi−− · · ·−−xn = y,

which is a contradiction. Therefore C =
⋃m

i=1 ai + J(R) for some ai ∈ R and
hence n = m|J(R)|. By [14, Proposition 4.8], it is easy to see that {a1 +
J(R), a2 + J(R), . . . , am + J(R)} is a vertex cut of Γ(R/J(R)). So

κ(Γ(R/J(R))) ≤ m = n/|J(R)| = κ(Γ(R))/|J(R)|.

This completes the proof. �

The following theorem is one of our main results in this paper.

Theorem 4.3. Let R be a ring. Then κ(Γ(R)) = κ′(Γ(R)) = δ(Γ(R)) =
|U(R)|.

Proof. Let R = R1×· · ·×Rn be a ring such that Ri is a local ring with maximal
ideal mi. By Theorems 4.1 and 4.2, we have

κ(Γ(R)) = κ(Γ(R/J(R))|J(R)|
= κ(Γ(R1/m1 × · · · ×Rn/mn))|m1| · · · |mn|
= (|R1/m1| − 1) · · · (|Rn/mn| − 1)|m1| · · · |mn|
= (|R1| − |m1|) · · · (|Rn| − |mn|)
= |U(R)|.

This completes the proof. �
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5. Hamiltonian cycle and matching

Let R 6= Z2 be a ring. Since Γ(R) is a refinement of the unit graph G(R), [17,
Theorem 2.1] implies that Γ(R) is Hamiltonian. In this section, by a simple
and constructive method, we show that Γ(R) is Hamiltonian if and only if it is
connected. As a consequence of this result, we show that Γ(R) has a perfect
matching if and only if |R| is an even number. We begin with the following
lemma.

Lemma 5.1. Let R be a ring. If Γ(R/J(R)) is Hamiltonian, then Γ(R) is also
Hamiltonian.

Proof. Let J(R) = {j1, . . . , jn} and a1 + J(R)−− · · ·−−ak + J(R) be a Hamil-
tonian cycle in Γ(R/J(R)). By [14, Proposition 4.8], we have the following
path in Γ(R):

Pi := ji + a1−−ji + a2−− · · ·−−ji + ak , (1 ≤ i ≤ n).

Now we construct the following Hamiltonian cycle in Γ(R):

P1−−P2−− · · ·−−Pn.

This completes the proof. �

Remark 5.2. We note that the converse of the above lemma is false. For
example, let R 6= Z2 be a ring such that R/J(R) = Z2. Then Γ(R/J(R)) is
not Hamiltonian. But it is easy to see that R is a local ring with maximal
ideal m such that |R/m| = 2. Therefore Γ(R) is a complete bipartite graph, by
Theorem 2.2. Hence Γ(R) is Hamiltonian.

Theorem 5.3. Let R be a ring such that R 6= Z2. Then Γ(R) is a connected
graph if and only if Γ(R) is Hamiltonian.

Proof. Suppose Γ(R) is a connected graph. In view of [14, Theorem 3.5], we
may assume that R/J(R) = F1×F2× · · ·×Fn, where Fi is a field. Since Γ(R)
is connected, by Corollary 2.6, we have the following cases:
Case 1: |Fi| > 2, for all 1 ≤ i ≤ n. In this case, we claim that Γ(R) is
a Hamiltonian graph. More generally, we show that there is a Hamiltonian

cycle X̂1−−X̂2−− · · ·−−X̂s such that no entries of X̂1 and X̂s are zero. We use
induction on n. Suppose that n = 1 and F1 = {a1 = 0, a2, . . . , a|F1|}. Then it is
easy to see that a2−−0−−a3−−a4−− · · ·−−a|F1| is a Hamiltonian cycle in Γ(F1).
Now suppose that n > 1. By the induction hypothesis there is a Hamiltonian

cycle X̂1−−X̂2−− · · ·−−X̂s in Γ(F1 × F2 × · · · × Fn−1) such that no entries of

X̂1 and X̂s are zero. Let Fn = {c1 = 0, c2, . . . , c|Fn|}. In view of Proposition
1.1, we define the following path:

Pi,i+1 := (X̂i, c2)−−(X̂i+1, 0)−−(X̂i, c3)−−(X̂i+1, c2)−−(X̂i, 0)−−(X̂i+1, c3)

−−(X̂i, c4)−−(X̂i+1, c4)−− · · ·−−(X̂i, c|Fn|)−−(X̂i+1, c|Fn|).

Now we have the following two cases:



1208 A. R. NAGHIPOUR AND M. REZAGHOLIBEIGI

If s is an even number we construct the following Hamiltonian cycle in
Γ(R/J(R)):

P1,2−−P3,4−− · · ·−−Ps−1,s.

If s is an odd number we construct the following Hamiltonian cycle in
Γ(R/J(R)):

P1,2−−P3,4−− · · ·−−Ps−2,s−1−−(X̂s,0)−−(X̂s, c2)−−(X̂s, c3)−− · · ·−−(X̂s, c|Fn|).

Case 2: R/J(R) = Z2. In this case Γ(R) is Hamiltonian, by Remark 5.2.
Case 3: n > 1 and F1 = Z2 and Fi 6= Z2 for all 2 ≤ i ≤ n. By Case 1,

Γ(F2 × F3 × · · · × Fn) has a Hamiltonian cycle, say Ŷ1−−Ŷ2−− · · ·−−Ŷh, such

that no entries of Ŷ1 and Ŷh are zero. We have the following two cases: If h is
an even number, we construct the following Hamiltonian cycle in Γ(R/J(R)):

(1, Ŷ1)−−(0, Ŷ2)−−(1, Ŷ3)−−(0, Ŷ4)−− · · ·−−(1, Ŷh−1)−−(0, Ŷh)

−−(1, Ŷh)−−(0, Ŷh−1)−− · · ·−−(1, Ŷ2)−−(0, Ŷ1).

If h is an odd number, we have the following Hamiltonian cycle in Γ(R/J(R)):

(1, Ŷ1)−−(0, Ŷ2)−−(1, Ŷ3)−−(0, Ŷ4) · · · −−(0, Ŷh−1)−−(1, Ŷh)

−−(0, Ŷh)−−(1, Ŷh−1) · · · −−(1, Ŷ2)−−(0, Ŷ1).

Now Lemma 5.1 implies that Γ(R) is a Hamiltonian graph. The converse is
trivial. �

A matching in a graph G is a set of edges no two of which share an endpoint.
The vertices incident to the edges of a matching M are saturated by M . A
perfect matching in a graph is a matching that saturates every vertex.

Lemma 5.4. Let R be a ring. If Γ(R/J(R)) has a perfect matching, then Γ(R)
also has a perfect matching.

Proof. Suppose that J(R) = {j1, . . . , jm} and let a1 + J(R), . . . , ak + J(R) be
all distinct elements of R/J(R). Let {e1, . . . , ek/2} be a perfect matching for
Γ(R/J(R)). Without loss of generality, we may assume that ei is the edge
between vertices a2i−1 + J(R) and a2i + J(R), for all 1 ≤ i ≤ k/2. According
to this assumption and [14, Proposition 4.8], we conclude that a2i−1 + jt is
adjacent to a2i + jt in Γ(R) by some edge, say ei,t, for all 1 ≤ i ≤ k/2 and all
1 ≤ t ≤ m. Now it is easy to see that {ei,t|1 ≤ i ≤ k/2, 1 ≤ t ≤ m} is a perfect
matching for Γ(R). �

Remark 5.5. The converse of the above lemma is also true (see Corollary 5.7).

Theorem 5.6. Let R be a ring. Then Γ(R) has a perfect matching if and only
if |R| is an even number.
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Proof. Suppose that |R| is an even number. First assume that Γ(R) is con-
nected. If R = Z2, obviously R has a perfect matching. So let R 6= Z2. By
Theorem 5.3, Γ(R) has the following Hamiltonian cycle:

v1−−v2−− · · ·−−vn.
Let ei be the edge between the vertices vi and vi+1 for all 1 ≤ i ≤ n − 1. Set
M := {e1, e3, . . . , en−1}. Then M is a perfect matching.

Now let Γ(R) be a disconnected graph. By Corollary 2.6, we may assume
that R/J(R) = Z2 × Z2 × · · · × Z2︸ ︷︷ ︸

n times

×F1 × F2 × · · · × Ft, such that n ≥ 2,

where Fi is a field and Fi 6= Z2, for all 1 ≤ i ≤ t. First consider the ring
S = Z2 × Z2 × · · · × Z2︸ ︷︷ ︸

n times

. For x ∈ {0, 1}, we define:

xc :=

{
1 if x = 0,
0 if x = 1.

If X̂ = (x1, x2, . . . , xn) is an arbitrary element of S, we define X̂c := (x1
c, x2

c,

. . . , xn
c). It is clear that X̂c is the unique neighborhood of X̂ and hence every

element of Γ(S) has degree 1. Therefore Γ(S) has 2n/2 connected compo-
nents that are isomorphic to K2. Now we consider the ring R/J(R). We have

R/J(R) = {(X̂, Ŷ )| X̂ ∈ S and Ŷ ∈ F1 × · · · × Ft}. Suppose that X̂ is an
arbitrarily fixed element of S and set

C := {(X̂, Ŷ )| Ŷ ∈ F1 × · · · × Ft} ∪ {(X̂c, Ŷ )| Ŷ ∈ F1 × · · · × Ft}.

Clearly, if Ẑ ∈ S and Ẑ 6∈ {X̂, X̂c}, then (Ẑ, Ŷ ) is not adjacent to any element
of C. We claim that C is a connected component of Γ(R/J(R)) and has a
perfect matching. Define the following map:

h : Γ(C) −→ Γ(Z2 × F1 × · · · × Ft),

where h(X̂, Ŷ ) = (0, Ŷ ) and h(X̂c, Ŷ ) = (1, Ŷ ). It is easy to see that any two
vertices of Γ(C), say c1, c2, are adjacent if and only if h(c1) is adjacent to h(c2).
So Γ(C) is isomorphic to Γ(Z2×F1×· · ·×Ft). The graph Γ(Z2×F1×· · ·×Ft)
has a Hamiltonian cycle, by Theorem 5.3, and has even vertices. Therefore it
has a perfect matching. This implies that Γ(C) also has a perfect matching.
On the other hand, all connected components of Γ(R/J(R)) are isomorphic to
Γ(C) and hence Γ(R/J(R)) has a perfect matching. Now Lemma 5.4 implies
that Γ(R) has a perfect matching.

The converse is trivial. �

Corollary 5.7. Let R be a ring. Then Γ(R) has a perfect matching if and only
if Γ(R/J(R)) has a perfect matching.

Proof. Suppose that R = R1× · · ·×Rn, where Ri is a local ring with maximal
ideal mi. Suppose Γ(R) has a perfect matching. By Theorem 5.6, |R| is an
even number. Therefore there is 1 ≤ i ≤ n, such that |Ri| is an even number.



1210 A. R. NAGHIPOUR AND M. REZAGHOLIBEIGI

Hence, by [1, Proposition 2.1], |Ri/mi| is even. So we deduce that |R/J(R)| =
|R1/m1|×· · ·×|Rn/mn| is an even number. By the above Theorem, we conclude
that Γ(R/J(R)) has a perfect matching.

The converse follows easily from Lemma 5.4. �
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