DOI QR코드

DOI QR Code

Pulmonary Tuberculosis Diagnosis: Where We Are?

  • Received : 2015.09.13
  • Accepted : 2016.01.19
  • Published : 2016.07.01

Abstract

In recent years, in spite of medical advancement, tuberculosis (TB) remains a worldwide health problem. Although many laboratory methods have been developed to expedite the diagnosis of TB, delays in diagnosis remain a major problem in the clinical practice. Because of the slow growth rate of the causative agent Mycobacterium tuberculosis, isolation, identification, and drug susceptibility testing of this organism and other clinically important mycobacteria can take several weeks or longer. During the past several years, many methods have been developed for direct detection, species identification, and drug susceptibility testing of TB. A good understanding of the effectiveness and practical limitations of these methods is important to improve diagnosis. This review summarizes the currently-used advances in non-molecular and molecular diagnostics.

Keywords

References

  1. Asgharzadeh M, Kafil HS, Pourostadi M. Source case identification and control of tuberculosis by molecular epidemiology. J Mazandaran Univ Med Sci 2014;24:181-92.
  2. Nyendak MR, Lewinsohn DA, Lewinsohn DM. New diagnostic methods for tuberculosis. Curr Opin Infect Dis 2009;22:174-82. https://doi.org/10.1097/QCO.0b013e3283262fe9
  3. Asgharzadeh M, Kafil HS, Roudsary AA, Hanifi GR. Tuberculosis transmission in Northwest of Iran: using MIRU-VNTR, ETR-VNTR and IS6110-RFLP methods. Infect Genet Evol 2011;11:124-31. https://doi.org/10.1016/j.meegid.2010.09.013
  4. Laraque F, Griggs A, Slopen M, Munsiff SS. Performance of nucleic acid amplification tests for diagnosis of tuberculosis in a large urban setting. Clin Infect Dis 2009;49:46-54. https://doi.org/10.1086/599037
  5. Piersimoni C, Scarparo C. Relevance of commercial amplification methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 2003;41:5355-65. https://doi.org/10.1128/JCM.41.12.5355-5365.2003
  6. World Health Organization. Global tuberculosis control: a short update to the 2009 report [Internet]. Geneva: World Health Organization; 2009 [cited 2009 Jan 16]. Available from: http://apps.who.int/iris/bitstream/10665/44241/1/9789241598866_eng.pdf.
  7. Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 2006;6:570-81. https://doi.org/10.1016/S1473-3099(06)70578-3
  8. Cruciani M, Scarparo C, Malena M, Bosco O, Serpelloni G, Mengoli C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol 2004;42:2321-5. https://doi.org/10.1128/JCM.42.5.2321-2325.2004
  9. Tiwari RP, Hattikudur NS, Bharmal RN, Kartikeyan S, Deshmukh NM, Bisen PS. Modern approaches to a rapid diagnosis of tuberculosis: promises and challenges ahead. Tuberculosis (Edinb) 2007;87:193-201. https://doi.org/10.1016/j.tube.2006.07.005
  10. Pfyffer GE, Welscher HM, Kissling P, Cieslak C, Casal MJ, Gutierrez J, et al. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 1997;35:364-8.
  11. Asgharzadeh M, Shahbabian K, Samadi Kafil H, Rafi A. Use of DNA fingerprinting in identifying the source case of tuberculosis in East Azarbaijan province of Iran. J Med Sci 2007;7:418-21. https://doi.org/10.3923/jms.2007.418.421
  12. Centers for Disease Control and Prevention (CDC). Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep 2009;58:7-10.
  13. Greco S, Girardi E, Navarra A, Saltini C. Current evidence on diagnostic accuracy of commercially based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis. Thorax 2006;61:783-90. https://doi.org/10.1136/thx.2005.054908
  14. Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don't know can, and does, hurt us. Science 2010;328:852-6. https://doi.org/10.1126/science.1184784
  15. Soini H, Musser JM. Molecular diagnosis of mycobacteria. Clin Chem 2001;47:809-14.
  16. Aono A, Azuma Y, Mitarai S, Ogata H. Rapid prediction of BACTEC MGIT 960 culture results by COBAS amplicor Mycobacterium polymerase chain reaction detection. Diagn Microbiol Infect Dis 2009;64:27-30. https://doi.org/10.1016/j.diagmicrobio.2009.01.011
  17. Kim JH, Kim YJ, Ki CS, Kim JY, Lee NY. Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. J Clin Microbiol 2011;49:173-6. https://doi.org/10.1128/JCM.00694-10
  18. Michos AG, Daikos GL, Tzanetou K, Theodoridou M, Moschovi M, Nicolaidou P, et al. Detection of Mycobacterium tuberculosis DNA in respiratory and nonrespiratory specimens by the Amplicor MTB PCR. Diagn Microbiol Infect Dis 2006;54:121-6. https://doi.org/10.1016/j.diagmicrobio.2005.09.002
  19. Lee MR, Chung KP, Wang HC, Lin CB, Yu CJ, Lee JJ, et al. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J Med Microbiol 2013;62(Pt 8):1160-4. https://doi.org/10.1099/jmm.0.052043-0
  20. Yuen KY, Yam WC, Wong LP, Seto WH. Comparison of two automated DNA amplification systems with a manual one-tube nested PCR assay for diagnosis of pulmonary tuberculosis. J Clin Microbiol 1997;35:1385-9.
  21. Bloemberg GV, Voit A, Ritter C, Deggim V, Bottger EC. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol 2013;51:2112-7. https://doi.org/10.1128/JCM.00142-13
  22. Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, et al. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 1990;18:188. https://doi.org/10.1093/nar/18.1.188
  23. Andersen AB, Hansen EB. Structure and mapping of antigenic domains of protein antigen b, a 38,000-molecular-weight protein of Mycobacterium tuberculosis. Infect Immun 1989;57:2481-8.
  24. Chen JH, She KK, Kwong TC, Wong OY, Siu GK, Leung CC, et al. Performance of the new automated Abbott RealTime MTB assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens. Eur J Clin Microbiol Infect Dis 2015;34:1827-32. https://doi.org/10.1007/s10096-015-2419-5
  25. Centers for Disease Control and Prevention (CDC). Update: nucleic acid amplification tests for tuberculosis. MMWR Morb Mortal Wkly Rep 2000;49:593-4.
  26. Pfyffer GE, Kissling P, Wirth R, Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol 1994;32:918-23.
  27. Bergmann JS, Yuoh G, Fish G, Woods GL. Clinical evaluation of the enhanced Gen-Probe amplified Mycobacterium tuberculosis direct test for rapid diagnosis of tuberculosis in prison inmates. J Clin Microbiol 1999;37:1419-25.
  28. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 2012;7:1190-7. https://doi.org/10.1021/cb2004884
  29. Barrett A, Magee JG, Freeman R. An evaluation of the BD ProbeTec ET system for the direct detection of Mycobacterium tuberculosis in respiratory samples. J Med Microbiol 2002;51:895-8. https://doi.org/10.1099/0022-1317-51-10-895
  30. Piersimoni C, Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, et al. Performance assessment of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex from respiratory and extrapulmonary specimens. J Clin Microbiol 2002;40:4138-42. https://doi.org/10.1128/JCM.40.11.4138-4142.2002
  31. World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system [Internet]. Geneva: World Health Organization; 2011 [cited 2015 Mar 1]. Available from: http://www.who.int/iris/handle/10665/44586#sthash.Cdd-BEYMy.dpuf.
  32. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert$^{(R)}$ MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2014;(1):CD009593.
  33. International standards for tuberculosis care, 3rd edition [Internet]. The Hague: TB Care 1; 2014 [cited 2015 Mar 1]. Available from: http://www.who.int/tb/publications/ISTC_3rdEd.pdf?ua=1.
  34. World Health Organization. Xpert MTB/RIF implementation manual: technical and perational 'how-to': practical considerations [Internet]. Geneva: World Health Organization; 2014 [cited 2015 Mar 1]. Available from: http://apps.who.int/iris/bitstream/10665/112469/1/9789241506700_eng.pdf.
  35. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis : a systematic review and meta-analysis. BMC Infect Dis 2005;5:62. https://doi.org/10.1186/1471-2334-5-62
  36. Eigner U, Veldenzer A, Holfelder M. Evaluation of the Fluoro-Type MTB assay for the rapid and reliable detection of Mycobacterium tuberculosis in respiratory tract specimens. Clin Lab 2013;59:1179-81.
  37. Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S. Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol 2005;43:3699-703. https://doi.org/10.1128/JCM.43.8.3699-3703.2005
  38. Bang D, Bengard Andersen A, Thomsen VO. Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J Clin Microbiol 2006;44:2605-8. https://doi.org/10.1128/JCM.00752-06
  39. Somoskovi A, Dormandy J, Mitsani D, Rivenburg J, Salfinger M. Use of smear-positive samples to assess the PCR-based genotype MTBDR assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin. J Clin Microbiol 2006;44:4459-63. https://doi.org/10.1128/JCM.01506-06
  40. Raveendran R, Wattal C, Oberoi JK, Goel N, Datta S, Prasad KJ. Utility of GenoType MTBDRplus assay in rapid diagnosis of multidrug resistant tuberculosis at a tertiary care centre in India. Indian J Med Microbiol 2012;30:58-63. https://doi.org/10.4103/0255-0857.93034
  41. Tenover FC, Crawford JT, Huebner RE, Geiter LJ, Horsburgh CR Jr, Good RC. The resurgence of tuberculosis: is your laboratory ready? J Clin Microbiol 1993;31:767-70.
  42. Scarparo C, Ricordi P, Ruggiero G, Piccoli P. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460TB method. J Clin Microbiol 2004;42:1109-14. https://doi.org/10.1128/JCM.42.3.1109-1114.2004
  43. Adjers-Koskela K, Katila ML. Susceptibility testing with the manual mycobacteria growth indicator tube (MGIT) and the MGIT 960 system provides rapid and reliable verification of multidrug-resistant tuberculosis. J Clin Microbiol 2003;41:1235-9. https://doi.org/10.1128/JCM.41.3.1235-1239.2003
  44. Rusch-Gerdes S, Pfyffer GE, Casal M, Chadwick M, Siddiqi S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol 2006;44:688-92. https://doi.org/10.1128/JCM.44.3.688-692.2006
  45. World Health Organization. Noncommercial culture and drug-susceptibility testing methods for screening patients at risk for multidrug-resistant tuberculosis: policy statement. Geneva: World Health Organization; 2011.
  46. Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, Vivar A, et al. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 2006;355:1539-50. https://doi.org/10.1056/NEJMoa055524
  47. Ejigu GS, Woldeamanuel Y, Shah NS, Gebyehu M, Selassie A, Lemma E. Microscopic-observation drug susceptibility assay provides rapid and reliable identification of MDR-TB. Int J Tuberc Lung Dis 2008;12:332-7.
  48. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010;5:1733-54. https://doi.org/10.2217/fmb.10.127
  49. Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012;36:380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
  50. Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G. Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2009;23:877-84. https://doi.org/10.1002/rcm.3949
  51. Jiang X, Zhang W, Gao F, Huang Y, Lv C, Wang H. Comparison of the proteome of isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis. Microb Drug Resist 2006;12:231-8. https://doi.org/10.1089/mdr.2006.12.231
  52. Deng C, Lin M, Hu C, Li Y, Gao Y, Cheng X, et al. Exploring serological classification tree model of active pulmonary tuberculosis by magnetic beads pretreatment and MALDI-TOF MS analysis. Scand J Immunol 2011;74:397-405. https://doi.org/10.1111/j.1365-3083.2011.02590.x
  53. Lee SH. Diagnosis and treatment of latent tuberculosis infection. Tuberc Respir Dis 2015;78:56-63. https://doi.org/10.4046/trd.2015.78.2.56
  54. Chen J, Zhang R, Wang J, Liu L, Zheng Y, Shen Y, et al. Interferon-gamma release assays for the diagnosis of active tuberculosis in HIV-infected patients: a systematic review and meta-analysis. PLoS One 2011;6:e26827. https://doi.org/10.1371/journal.pone.0026827
  55. World Health Organization. Use of tuberculosis interferon-gamma release assays (IGRAs) in low-and middle-income countries: policy statement. Geneva: World Health Organization; 2011.
  56. Ravn P, Munk ME, Andersen AB, Lundgren B, Lundgren JD, Nielsen LN, et al. Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis -specific antigens ESAT- 6 and CFP-10 for diagnosis of active tuberculosis. Clin Diagn Lab Immunol 2005;12:491-6.
  57. Kang YA, Lee HW, Yoon HI, Cho B, Han SK, Shim YS, et al. Discrepancy between the tuberculin skin test and the whole-blood interferon gamma assay for the diagnosis of latent tuberculosis infection in an intermediate tuberculosis-burden country. JAMA 2005;293:2756-61. https://doi.org/10.1001/jama.293.22.2756
  58. Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet 2000;356:1099-104. https://doi.org/10.1016/S0140-6736(00)02742-2
  59. Goletti D, Carrara S, Butera O, Amicosante M, Ernst M, Sauzullo I, et al. Accuracy of immunodiagnostic tests for active tuberculosis using single and combined results: a multicenter TBNET-Study. PLoS One 2008;3:e3417. https://doi.org/10.1371/journal.pone.0003417
  60. Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 2008;149:177-84. https://doi.org/10.7326/0003-4819-149-3-200808050-00241
  61. Diel R, Goletti D, Ferrara G, Bothamley G, Cirillo D, Kampmann B, et al. Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J 2011;37:88-99. https://doi.org/10.1183/09031936.00115110
  62. Sester M, Sotgiu G, Lange C, Giehl C, Girardi E, Migliori GB, et al. Interferon-gamma release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis. Eur Respir J 2011;37:100-11. https://doi.org/10.1183/09031936.00114810
  63. Hunter SW, Gaylord H, Brennan PJ. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 1986;261:12345-51.
  64. Inverness Medical Innovations. Clearview TB ELISA [Internet]. Waltham: Inverness Medical Innovations Inc.; 2010 [cited 2015 Mar 1]. Available from: http://www.clearview.com/tb_elisa.aspx.
  65. Boehme C, Molokova E, Minja F, Geis S, Loscher T, Maboko L, et al. Detection of mycobacterial lipoarabinomannan with an antigen-capture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis. Trans R Soc Trop Med Hyg 2005;99:893-900. https://doi.org/10.1016/j.trstmh.2005.04.014
  66. Minion J, Leung E, Talbot E, Dheda K, Pai M, Menzies D. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J 2011;38:1398-405. https://doi.org/10.1183/09031936.00025711
  67. Kroidl I, Clowes P, Reither K, Mtafya B, Rojas-Ponce G, Ntinginya EN, et al. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur Respir J 2015;46:761-70. https://doi.org/10.1183/09031936.00003315
  68. Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis 2012;12:103. https://doi.org/10.1186/1471-2334-12-103
  69. Keeler E, Perkins MD, Small P, Hanson C, Reed S, Cunningham J, et al. Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature 2006;444 Suppl 1:49-57.
  70. Ryu YJ. Diagnosis of pulmonary tuberculosis: recent advances and diagnostic algorithms. Tuberc Respir Dis 2015;78:64-71. https://doi.org/10.4046/trd.2015.78.2.64
  71. Zhang R, Long Y, He W, Hao X, Liu J. Application status of MALDI-TOF mass spectrometry in the identification and drug resistance of Mycobacterium tuberculosis. J Thorac Dis 2014;6:512-6.

Cited by

  1. Circulating microRNAs as Potential Biomarkers of Infectious Disease vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00118
  2. A Rare Case of Tracheobronchitis Alternariosis in a Renal Transplant Recipient vol.80, pp.4, 2016, https://doi.org/10.4046/trd.2016.0024
  3. Down-Regulation of Serum High-Mobility Group Box 1 Protein in Patients with Pulmonary Tuberculosis and Nontuberculous Mycobacterial Lung Disease vol.80, pp.2, 2016, https://doi.org/10.4046/trd.2017.80.2.153
  4. Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy vol.55, pp.5, 2016, https://doi.org/10.1128/jcm.02408-16
  5. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species vol.55, pp.9, 2016, https://doi.org/10.1128/jcm.00549-17
  6. Treatment adherence among sputum smear-positive pulmonary tuberculosis patients in Xinjiang, China: a prospective study vol.8, pp.16, 2016, https://doi.org/10.1039/c7ra11820a
  7. Rapid molecular assays for detection of tuberculosis vol.10, pp.1, 2018, https://doi.org/10.1186/s41479-018-0049-2
  8. Epidemiology of Causes of Fever of Unknown Origin in an Academic Center: A Five-Year Evaluation from 2009 to 2014 vol.13, pp.5, 2016, https://doi.org/10.5812/archcid.69608
  9. Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance vol.82, pp.2, 2016, https://doi.org/10.4046/trd.2018.0027
  10. Toll-Like Receptor 4 as an Immune Receptor AgainstMycobacterium tuberculosis: A Systematic Review vol.50, pp.2, 2016, https://doi.org/10.1093/labmed/lmy047
  11. Clinical usefulness of routine AFB culture and MTB PCR of EBUS‐TBNA needle rinse fluid vol.24, pp.7, 2019, https://doi.org/10.1111/resp.13488
  12. False-Positive Mycobacterium tuberculosis Detection: Ways to Prevent Cross-Contamination vol.83, pp.3, 2016, https://doi.org/10.4046/trd.2019.0087