DOI QR코드

DOI QR Code

Estimation of major sources of Polycyclic Aromatic Hydrocarbons (PAHs) in Seoul by using the receptor models

수용 모델을 이용한 서울시의 PAHs 주요 배출원 추정

  • Han, Sang Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Ji Yi (Department of Renewable Energy Convergence, Chosun University) ;
  • Kim, Yong Pyo (Department of Environmental Science and Engineering, Ewha Womans University)
  • 한상희 (이화여자대학교 환경공학과) ;
  • 이지이 (조선대학교 환경공학과) ;
  • 김용표 (이화여자대학교 환경공학과)
  • Received : 2016.04.22
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

The PMF result was compared with the result from the Chemical Mass Balance (CMB) modelling (Lee and Kim, 2007) to estimate major source of PAHs observed at Seoul from August 2002 to December 2003. Five major sources were estimated from PMF and CMB modellings respectively. Among them three major sources (coal combustion for residential, coke oven and biomass burning) were identified at both models.

Keywords

References

  1. ATSDR (Agency for Toxic Substances and Disease Registry) (1989). Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry, Clement Associates.
  2. Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G. (2009). Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 43, 4722-4732. https://doi.org/10.1016/j.atmosenv.2008.09.006
  3. Duval, M. M. and Friedlander, S. K., (1981). Source resolution of polycyclic aromatic hydrocarbons in the Los Angeles atmosphere. US EPA, Washington, DC, EPA-600/2-81-161.
  4. Harrison, R. M., Smith, D. J. T., and Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol., 30, 825-832. https://doi.org/10.1021/es950252d
  5. Heo, J. B., Hopke, P. K., and Yi, S. M. (2009). Source apportionment of $PM_{2.5}$ in Seoul, Korea. Atmos. Chem. phys., 9, 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  6. Jung, D. B., Cho, Y. S., Kim, I. S., Lee, J. Y., and Kim, Y. P. (2015). Impact of energy consumption in northeast Asia to the particulate PAHs levels and composition at Seoul, Aerosol Air Qual. Res., 15, 2190-2199. https://doi.org/10.4209/aaqr.2015.01.0038
  7. Kim, I. S., Lee J. Y., and Kim, Y. P. (2013). Impact of polycyclic aromatic hydrocarbon (PAH) emissions from North Korea to the air quality in the Seoul Metropolitan Area, South Korea, Atmos. Environ., 70, 159-165. https://doi.org/10.1016/j.atmosenv.2012.12.040
  8. Khalili, N. R., Scheff, P. A., and Holsen, T. M. (1995). PAH source fingerprints from coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions, Atmos. Environ., 29, 533-542. https://doi.org/10.1016/1352-2310(94)00275-P
  9. Lee, J. H., Gigliotti, C. L., Offenberg, J. H., Eisenreich, S. J., Turpin, B. J (2004) Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed, Atmos. Environ., 38, 5971-5981. https://doi.org/10.1016/j.atmosenv.2004.07.004
  10. Lee, J. Y., Kim, Y. P., Kang, C. H., and Ghim, Y. S. (2006). Seasonal trend of particulate PAHs at Gosan, a background site in Korea between 2001 and 2002 and major factors affecting their levels. Atmospheric research, 82, 680-687. https://doi.org/10.1016/j.atmosres.2006.02.022
  11. Lee, J. Y. and Kim, Y. P. (2007). Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity, Atmos. Chem. Phys., 7, 3587-3596. https://doi.org/10.5194/acp-7-3587-2007
  12. Marr, L. C., Dzepina, K., Jimenez, J. L., Reisen, F., Bethel, H. L., Arey, J., Gaffney, J. S., Marley, N. A., Molina, L. T., and Molina, M. J. (2006). Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City, Atmos. Chem. Phys., 6, 1733-1745. https://doi.org/10.5194/acp-6-1733-2006
  13. Miguel, A. H., and Pereira, P. A. (1989). Benzo(k)fluoranthene, benzo(ghi)perylene, and indeno(1, 2, 3-cd)pyrene: new tracers of automotive emissions in receptor modeling. Aerosol Science and Technology, 10 (2), 292-295. https://doi.org/10.1080/02786828908959265
  14. Moon, K. J., Park, S. M., Park, J. S. Song, I. H., Jang, S. K., Kim, J. C. and Lee, S. J. (2011). Chemical Characteristics and Source Apportionment of PM2.5 in Seoul metropolitan area in 2010. J. KOSAE, 27 (6), 711-722. https://doi.org/10.5572/KOSAE.2011.27.6.711
  15. Na, K. and Kim, Y. P. (2007). Chemical mass balance receptor model applied to ambient C 2-C 9 VOC concentration in Seoul, Korea: effect of chemical reaction losses. Atmos. Environ., 41 (32), 6715-6728. https://doi.org/10.1016/j.atmosenv.2007.04.054
  16. Okuda. K, Okamoto. K, Tanaka. S, Shen. Z, Han. Y, and Huo. Z (2010) Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi'an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Science of the Total Environment, 408, 1909-1904 https://doi.org/10.1016/j.scitotenv.2010.01.040
  17. Paatero, P., Eberly, S., Brown, S. G., and Norris, G. A. (2014). Methods for estimating uncertainty in factor analytic solutions, Atmos. Meas. Tech., 7, 781-797. https://doi.org/10.5194/amt-7-781-2014
  18. Park, S. S., Kim, Y. J., and Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea, Atmos. Environ., 36, 2917-2924. https://doi.org/10.1016/S1352-2310(02)00206-6
  19. Rogge, W. F., Hidlemann, L. M., Mazurek, M. A., and Cass, G. R. (1998). Sources of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces, Environ. Sci. Technol., 32, 13-22. https://doi.org/10.1021/es960930b
  20. Simcik, M. F., Eisenreich, S. J., and Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan, Atmos. Environ., 33, 5071-5079. https://doi.org/10.1016/S1352-2310(99)00233-2
  21. Sofowote, U. M., McCarry, B. E., and Marvin, C. H. (2008). Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environ. Sci. tech., 42, 16, 6007-6014. https://doi.org/10.1021/es800219z
  22. Sofowote, U. N., Hung, H., Rastogi, A. K., Westgate, J. N., Deluca, P. F., Su, Y., and McCarry, B. E. (2011). Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function, Atmos. Environ., 45, 967-976. https://doi.org/10.1016/j.atmosenv.2010.11.005
  23. US EPA (U.S Environmental Protection Agency) (1999). Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS).
  24. US EPA (U.S Environmental Protection Agency) (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide.
  25. Watson, J. G., Robinson, N. F., Chow, J. C., Henry, R. C., Kim, B. K., Pace, T. G., Meyer, E. L., and Nguyen, Q. (1990). The USEPA/DRI chemical mass balance receptor model, CMB 7.0, Environmental software, 5 (1), 38-49. https://doi.org/10.1016/0266-9838(90)90015-X
  26. Zhang, Y., Guo, C.S., Xu, J., Tian, Y.Z., Shi, G. L., Feng, Y.C. (2012) Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res. 46, 3065-3073 https://doi.org/10.1016/j.watres.2012.03.006
  27. Zheng, M., Salmon, L. G., Schauer, J. J., Zheng, L., Kiang, C. S., Zhang, Y., and Cass, G. R. (2005) Seasonal trends in PM2.5 source contributions in Beijing, China, Atmos. Environ. 39, 3967-3976. https://doi.org/10.1016/j.atmosenv.2005.03.036