참고문헌
- P. Bauer, A. Thorpe, G. Brunet, "The quiet revolution of numerical weather prediction," Nature, Vol. 525, issue. 7567, pp. 47-55, 2015. https://doi.org/10.1038/nature14956
- J. M. Straka, E. N. Rasamussen, S. E. Fredrickson, “A mobile mesonet for finescale meteorological observations,” American Meteorological Society, Vol. 13, No. 5, pp. 921-936, 1996.
- J. J. Cassano, “Weather bike: a bicycle-based weather station for observing local temperature variations,” American Meteorological Society, Vol. 95, No. 2, pp. 205-209, 2014. https://doi.org/10.1175/BAMS-D-13-00044.1
- W. P. Mahoney III, J. M. O'Sullivan, "Realizing the potential of vehicle-based observations," Bulletin of the American Meteorological Society, Vol. 94, No. 2, pp. 1007-1018, 2013. https://doi.org/10.1175/BAMS-D-12-00044.1
- C. L. Muller, L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, R. R. Leigh, "Crowdsourcing for climate and atmospheric sciences: current status and future potential," International Journal of Climatology, Vol. 35, pp. 3185-3203, 2015. https://doi.org/10.1002/joc.4210
- N.-Y. Kim, Y.-H. Kim, Y. Yoon, H.-H. Im, Reno K. Y. Choi, Y. H. Lee, "Correcting air-pressure data collected by MEMS sensors in smartphones," Journal of Sensors, Vol. 2015, article ID. 245498, pp. 10
- F. Persson, T. Svahn, Mobile Meteorological Measurements, Department of Electrical and Information Technology, Lund University, 2011.
- J.-H. Ha, Y.-H. Kim, Y. H. Lee, “Forecasting the precipitation of the next day using deep learning,” Journal of Korean Institute of Intelligent Systems, Vol. 26, No. 2, pp. 93-98, 2016. https://doi.org/10.5391/JKIIS.2016.26.2.093
- D. Kim, K. Seo, “Comparison of linear and nonlinear regression and elements analysis for wind speed prediction,” Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 5, pp. 477-482, 2015. https://doi.org/10.5391/JKIIS.2015.25.5.477
- J.-S. Bae, C.-S. Song, S.-K. Oh, “Design of meteorological radar echo classifier based on RBFNN using radial velocity,” Journal of Korean Institute of Intelligent Systems, Vol. 25, No. 3, pp. 242-247, 2015. https://doi.org/10.5391/JKIIS.2015.25.3.242
- B. Hyoen, K. Seo, Y. H. Lee, "Two evolutionary algorithms based compensation techniques for short-term temperature prediction," Proceeding of KIIS Spring Conference, Vol. 23, no. 1, pp. 38-39, 2013.
- S.-J. Lim, H.-K. Kim, S.-K. Oh, "Design of regression model based on feature selection for quality control with correction of error on AWS observation data," Proceeding of KIIS Autumn Conference, Vol. 25, No. 2, pp. 17-18, 2015.
- M. W. Gardner, S. R. Dorling, "Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences," Atmospheric Environment, Vol. 32, no. 14-15, pp. 2627-2636, 1998. https://doi.org/10.1016/S1352-2310(97)00447-0
- A. Smola, V. Vapnik, "Support vector regression machines," Advances in Neural Information Processing Systems, Vol. 9, pp. 155-161, 1997.
- A. Smola, B. Schoelkopf, "A tutorial on support vector regression," Statistics and Computing, Vol. 14, pp. 199-222, 2004. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Transactions on Neural Networks, Vol. 11, Issue 5, pp. 1188-1193, 2000. https://doi.org/10.1109/72.870050
- D. Frank, The Expectation Maximization Algorithm, Georgia Institute of Technology, 2002
- BIZ-GIS, biz-gis.com/GISDB:DEM.
- M. Jarraud, "Guide to meteorological instrument and methods of observation (WMO-No. 8)," World Meteorological Organization, 2008
- M. Hall, E. Frank, I. H. Witten, Data Mining :Practical Machine Learining Tool and Techniques, Morgan Kaufmann, 2011.
- J.-H. Ha, Y.-H. Kim, N.-Y. Kim, H.-H. Im, S. Sim, R. K. Y. Choi, "Improved correction of air-pressure data corrected by smartphones using support vector regression," Proceeding of KIIS Autumn Conference, Vol. 25, No. 2, pp. 171-172, 2015.