DOI QR코드

DOI QR Code

Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique

PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정

  • Lee, Hyuk (Dept. of Aerospace Engineering, Konkuk University) ;
  • Kim, Young Ju (Dept. of Aerospace Engineering, Konkuk University) ;
  • Byun, Yung Hwan (Dept. of Aerospace Engineering, Konkuk University) ;
  • Park, Soo Hyung (Dept. of Aerospace Engineering, Konkuk University)
  • Received : 2016.04.16
  • Accepted : 2016.05.26
  • Published : 2016.06.01

Abstract

Velocity profiles of laminar, transition and turbulent boundary layers were investigated by using Particle Image Velocimetry(PIV) measurements on the flat plate at Mach 2.96. The Schlieren visualization and PIV measurements are also used to confirm whether the oblique shock wave generated from the leading edge affects the flow field over the flat plate. The laminar velocity profile measured from the experiment was well matched with the compressible Blasius solution. The velocity profile of the transition boundary layer was well correlated with the theoretical turbulent velocity profile from near the wall and the transition began from Re = $1.41{\times}106$. For the turbulent boundary layer, considering compressibility effects, the Van Driest-transformed velocity satisfies the incompressible log-law. It is found that the log region is extended farther in the wall-normal direction compared to the log region in incompressible boundary layer.

본 연구는 Particle Image Velocimetry(PIV) 기법을 이용하여 마하수 2.96의 평판에 대해 층류, 천이, 난류 경계층의 속도 분포를 측정하였다. Schlieren 가시화 기법과 PIV 기법을 이용하여 앞전에서 발생한 경사 충격파가 평판 위의 유동장에 영향을 주는지 확인하였다. 층류 경계층의 경우, 실험에서 측정한 속도 분포가 압축성 Blasius 속도 분포를 만족하였다. 천이 경계층의 속도 분포는 벽면 부근부터 이론적인 난류 속도 분포로 변했으며, Re = $1.41{\times}10^6$에서 천이가 시작되었다. 난류 경계층 영역에서는 압축성 효과를 고려한 Van Driest 변환 속도가 비압축성 로그 법칙을 만족하였다. 또한 로그 구간이 끝나는 위치($y/{\delta}{\approx}0.28$)가 비압축성 난류 경계층($y/{\delta}{\approx}0.2$)에 비해 벽면에서 더 멀어진 것을 확인하였다.

Keywords

References

  1. Dolling, D. S., "Fifty Years of Shock-wave/Boundary Layer Interaction Research:What next?," AIAA Journal, Vol. 39, No. 8, 2001, pp. 1517-1531. https://doi.org/10.2514/2.1476
  2. Gadd, G. E., Holder, D. W., and Regan, J. D., "An Experimental Investigation of the Interaction between Shock Waves and Boundary Layers," Proceedings of the Royal Society a Mathmatical, Physical and Engineering Sciences, Vol. 226, No. 1165, 1954, pp. 227-253. https://doi.org/10.1098/rspa.1954.0251
  3. Van Driest, E. R., "Turbulent Boundary Layer in Compressible Fluids," AIAA Journal, Vol. 18, No.6, 1951, pp. 145-160.
  4. Schlichting, H., and Gersten, K., Boundary-Layer Theory, 7th Ed., McGraw-Hill, New York, 1979, pp. 702-723.
  5. Morkovin, M. V., "Effects of Compressibility on Turbulent Flows," Mecanique de la Turbulence, 1962. pp. 367-380.
  6. Smits, A. J., and Dussauge, J. P., Turbulent Shear Layers in Supersonic Flow, 2nd Ed., Springer, New York, 2006.
  7. Smits, A. J., Spina, E. F., Alving, A. E., Smith R. W., Fernando E. M., and Donovan J. F., "A Comparison of the Turbulence Structure of Subsonic and Supersonic Boundary Layers," Physics of Fluids A:Fluid Dynamics, Vol. 1, No.11, 1989, pp. 1865-1875. https://doi.org/10.1063/1.857511
  8. Lin, HE., ShiHe, YI., YuXin, Zhao., LiFeng, TIAN., and Zhi, Chen., "Experimental Study of a Supersonic Turbulent Boundary Layer using PIV," Science China Physics, Mechanics and Astronomy, Vol. 54, No. 9, 2011, pp. 1702-1709. https://doi.org/10.1007/s11433-011-4446-2
  9. Robinson, S. K., "Space-time Correlation Measurements in a Compressible Turbulent Boundary Layer," AIAA/ASME 4th Fluid Mechanics, Plasma Dynamics and Lasers Conference, 1986.
  10. Kistler, A. L., "Fluctuation Measurements in Supersonic Turbulent Boundary layer," Physics of Fluids, Vol. 2, No. 3, 1959, pp. 290-296. https://doi.org/10.1063/1.1705925
  11. Ganapathisubramani, B., "Statistical Properties of Streamwise Velocity in a Supersonic Turbulent Boundary Layer," Physics of Fluids 19, Vol. 19, No. 9, 2007.
  12. Park. D. H. and Park. S. O., "Nonlinear Stability Analysis of Boundary Layers by using Nonlinear Parabolized Stability Equations," The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 9, 2011, pp. 805-815. https://doi.org/10.5139/JKSAS.2011.39.9.805
  13. Borovoy, V. Ya., "Effect of the Unit Reynolds Number on the Measurements of Aerodynamic and Thermal Characteristics of Bodies in Wind Tunnels," Trudy TsAGI, No. 1374, 1972, pp.152-165.
  14. Giepman, R. H. M., schrijer, F.F.J., and Van Oudheusden, B. W., "High-Resolution PIV Measurements of a Transitional Shock Wave-Boundary Layer Interaction," Experiments in Fluids, Vol.56, No. 6, 2015.
  15. Kornilov, V. I., "Transition of the Boundary Layer on a Flat Plate at Supersonic and Hypersonic Velocities," Thermophysics and Aeromechanics, Vol. 16, No. 3, 2009.
  16. Illingworth, C. R., "Some Solutions of the Equations of Flow of a Viscous Compressible Fluid," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 46, No.3, 1950.
  17. Cebeci, T. and Cousteix J., Modeling and Computation of Boundary-Layer Flows, 2nd Ed., Springer, New York, 2005.
  18. Van Driest, E. R., "On Turbulent Flow near a Wall," Journal of the Aeronautical Sciences, Vol. 23, No. 11, 1956, pp. 1007-1011. https://doi.org/10.2514/8.3713
  19. Spalding., D. B., "A Single Formula for the Law of the Wall," Journal of Applied Mechanics, Vol. 28, No. 3, 1961, pp. 455-458. https://doi.org/10.1115/1.3641728