DOI QR코드

DOI QR Code

Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects

후속열처리 및 고온고습 조건에 따른 Cu 배선 확산 방지층 적용을 위한 ALD RuAlO 박막의 계면접착에너지에 관한 연구

  • Lee, Hyeonchul (School of Materials Science and Engineering, Andong National University) ;
  • Jeong, Minsu (Amkor Technology Korea Inc.) ;
  • Bae, Byung-Hyun (VITZROTECH Co., Ltd.) ;
  • Cheon, Taehun (School of Materials Science and Engineering, Yeungnam University) ;
  • Kim, Soo-Hyun (School of Materials Science and Engineering, Yeungnam University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 이현철 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 정민수 (앰코테크놀로지 코리아) ;
  • 배병현 ((주)비츠로테크) ;
  • 천태훈 (영남대학교 신소재공학부) ;
  • 김수현 (영남대학교 신소재공학부) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2016.05.16
  • Accepted : 2016.05.25
  • Published : 2016.06.30

Abstract

The effects of post-annealing and temperature/humidity conditions on the interfacial adhesion energies of atomic layer deposited RuAlO diffusion barrier layer for Cu interconnects were systematically investigated. The initial interfacial adhesion energy measured by four-point bending test was $7.60J/m^2$. The interfacial adhesion energy decreased to $5.65J/m^2$ after 500 hrs at $85^{\circ}C$/85% T/H condition, while it increased to $24.05J/m^2$ after annealing at $200^{\circ}C$ for 500 hrs. The X-ray photoemission spectroscopy (XPS) analysis showed that delaminated interface was RuAlO/$SiO_2$ for as-bonded and T/H conditions, while it was Cu/RuAlO for post-annealing condition. XPS O1s peak separation results revealed that the effective generation of strong Al-O-Si bonds between $AlO_x$ and $SiO_2$ interface at optimum post-annealing conditions is responsible for enhanced interfacial adhesion energies between RuAlO/$SiO_2$ interface, which would lead to good electrical and mechanical reliabilities of atomic layer deposited RuAlO diffusion barrier for advanced Cu interconnects.

차세대 반도체의 초미세 Cu 배선 확산방지층 적용을 위해 원자층증착법(atomic layer deposition, ALD) 공정을 이용하여 증착한 RuAlO 확산방지층과 Cu 박막 계면의 계면접착에너지를 정량적으로 측정하였고, 환경 신뢰성 평가를 수행하였다. 접합 직후 4점굽힘시험으로 평가된 계면접착에너지는 약 $7.60J/m^2$으로 측정되었다. $85^{\circ}C$/85% 상대습도의 고온고습조건에서 500시간이 지난 후 측정된 계면접착에너지는 $5.65J/m^2$로 감소하였으나, $200^{\circ}C$에서 500시간 동안 후속 열처리한 후에는 $24.05J/m^2$으로 계면접착에너지가 크게 증가한 것으로 평가되었다. 4점굽힘시험 후 박리된 계면은 접합 직후와 고온고습조건의 시편의 경우 RuAlO/$SiO_2$ 계면이었고, 500시간 후속 열처리 조건에서는 Cu/RuAlO 계면인 것으로 확인되었다. X-선 광전자 분광법 분석 결과, 고온고습조건에서는 흡습으로 인하여 강한 Al-O-Si 계면 결합이 부분적으로 분리되어 계면접착에너지가 약간 낮아진 반면, 적절한 후속 열처리 조건에서는 효과적인 산소의 계면 유입으로 인하여 강한 Al-O-Si 결합이 크게 증가하여 계면접착에너지도 크게 증가한 것으로 판단된다. 따라서, ALD Ru 확산방지층에 비해 ALD RuAlO 확산방지층은 동시에 Cu 씨앗층 역할을 하면서도 전기적 및 기계적 신뢰성이 우수할 것으로 판단된다.

Keywords

References

  1. P. Kapur and J. P. McVittie, "Technology and reliability constrained future copper interconnects", IEEE Transactions Electron. Dev., 49(4), 590 (2002). https://doi.org/10.1109/16.992867
  2. M. Jeong, J. K. Kim, H. O. Kang, W. J. Hwang and Y. B. Park, "Effects of wet chemical treatment and thermal cycle conditions on the interfacial adhesion energy of Cu/$SiN_x$ thin film interfaces", J. Microelectron. Packag. Soc., 21(1), 45 (2014). https://doi.org/10.6117/kmeps.2014.21.1.045
  3. M. J. Kim and J. J. Kim, "Electrodeposition for the fabrication of copper interconnection in semiconductor devices", Kor. Chem. Eng. Res., 52(1), 26 (2014). https://doi.org/10.9713/kcer.2014.52.1.26
  4. M. T. Bohr, "Interconnect scaling - The real limiter to high performance ULSI", Proc. IEEE IEDM Tech. Dig., 241-244 (1995).
  5. J. K. Kim, T. H. Cheon, S. H. Kim and Y. B. Park, "Interfacial adhesion dnergy of Ru-AlO thin film deposited by atomic layer deposition between Cu and $SiO_2$: Effect of the composition of Ru-AlO thin film", Jpn. J. Appl. Phys., 51, 05EB04 (2012). https://doi.org/10.7567/JJAP.51.05EB04
  6. S. P. Murarka, "Multilevel interconnections for ULSI and GSI era," Mater. Sci. Eng. R., 19, 87 (1997). https://doi.org/10.1016/S0927-796X(97)00002-8
  7. M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Intermetallic compound growth characteristics of Cu/thin Sn/Cu bump for 3-D stacked IC package", Kor. J. Met. Mater., 49, 180 (2011). https://doi.org/10.3365/KJMM.2011.49.2.180
  8. K. M. Latt and Y. K. Lee, H. L. Seng, and T. Osipowicz, "Diffusion barrier properties of ionized metal plasma deposited tantalum nitride thin films between copper and silicon dioxide", J. Mater. Sci., 36, 5845 (2001). https://doi.org/10.1023/A:1013088624226
  9. B. Li, T. D. Sullivan, T. C. Lee and D. Badami, "Reliability challenges for copper interconnects", Microelectron. Reliab., 44, 365 (2004). https://doi.org/10.1016/j.microrel.2003.11.004
  10. T. P. Moffat, M. Walker, P. J. Chen, J. E. Bonevich, W. F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskela and D. Josell, "Electrodeposition of Cu on Ru barrier layers for damascene processing", J. Electrochem. Soc., 153(1), C37 (2006). https://doi.org/10.1149/1.2131826
  11. W. Sari, T. K. Eom, S. H. Choi and S. H. Kim, "Ru/$WN_x$ Bilayers as Diffusion Barriers for Cu Interconnects", Jpn. J. Appl. Phys., 50, 05EA08 (2011). https://doi.org/10.7567/JJAP.50.05EA08
  12. H. Kim, "Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing", J. Vac. Sci. Technol., B21, 2231-2261 (2003).
  13. D. Josell, D. Wheeler, C. Witt and T. P. Moffat, "Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers", Electrochem. Solid-State Lett., 6(10), C143 (2009). https://doi.org/10.1149/1.1605271
  14. K. V. Sagi, H. P. Amanapu, L. G. Teugels and S. V. Babu, "Investigation of Guanidine Carbonate-Based Slurries for Chemical Mechanical Polishing of Ru/TiN Barrier Films with Minimal Corrosion", J. Solid State Sci. Tech., 3(7), 227 (2014).
  15. J. S. Reid, E. Kolawa, R. P. Ruiz and M. A. Nicolet, "Evaluation of amorphous (Mo, Ta, W)-Si-N diffusion barriers for Si/Cu metallizations", Thin Solid Films, 236, 319 (1993). https://doi.org/10.1016/0040-6090(93)90689-M
  16. T. Cheon, S. H. Choi, S. H. Kim and D. H. Kang, "Atomic layer deposition of RuAlO thin films as a diffusion barrier for seedless Cu interconnects", Electrochem. Solid-State Lett., 14(5), D57 (2011). https://doi.org/10.1149/1.3556980
  17. T. E. Hong, T. Cheon, S. H. Kim, J. K. Kim, Y. B. Park, O. J. Kwon, M. J. Kim and J. J. Kim, "Effects of $AlO_x$ incorporation into atomic layer deposited Ru thin films: Applications to Cu direct plating technology", J. Alloys Comp., 580, 72 (2013). https://doi.org/10.1016/j.jallcom.2013.05.035
  18. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Eng. Fract. Mech., 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  19. J. W. Kim, K. S. Kim, H. J. Lee, H. Y. Kim, Y. B. Park and S. M. Hyun, "Characterization and observation of Cu-Cu thermo-compression bonding using 4-point bending test system", J. Microelectron. Packag. Soc., 18(4), 11 (2011).
  20. J. K. Kim, E. K. Lee, M. S. Kim, J. H. Lim, K. H. Lee and Y. B. Park, "Interfacial adhesion energy of Ni-P electrolessplating contact for buried contact silicon solar cell using 4-point bending test system", J. Microelectron. Packag. Soc., 19(1), 55 (2012). https://doi.org/10.6117/kmeps.2012.19.1.055
  21. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, "A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces", J. Appl. Mech., 56(1), 77 (1989). https://doi.org/10.1115/1.3176069
  22. Z. Huang, Z. Suo, G. Xu, J. He, J. H. Prevost, N. Sukumar, "Initiation and arrest of an interfacial crack in a four-point bend test", Eng. Fract. Mecha., 72, 2584 (2005). https://doi.org/10.1016/j.engfracmech.2005.04.002
  23. C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, MN, p.44 (1978).
  24. M. W. Lane, J. M. Snodgrass and R. H. Dauskardt, "Environmental effects on interfacial adhesion", Microelectron. Reliab., 41, 1615 (2001). https://doi.org/10.1016/S0026-2714(01)00150-0
  25. R. P. Birringer, R. Shaviv, P. R. Besser and R. H. Dauskardt, "Environmentally assisted debonding of copper/barrier interfaces", Acta Mater., 60, 2219 (2012). https://doi.org/10.1016/j.actamat.2012.01.007
  26. M. S. Jeong, B. H. Bae, J. K. Kim, H. O. Kang, W. J. Hwang, J. M. Yang and Y. B. Park, "Effects of post-annealing/temperature/humidity treatments on the interfacial reliability of Cu capping layer for advanced Cu interconnects", Proc. 15th International Conference on Electronic Materials and Packaging and 12th International Symposium on Microelectronics and Packaging (EMAP/ISMP), Seoul, KMEPS (2013).
  27. A. Barranco, F. Yubero, J. P. Espinos and A. R. Gonzalez-Elipe, "The chemical state vector: a new concept for the characterization of oxide interfaces", Surf. Interface Anal., 31, 761 (2001). https://doi.org/10.1002/sia.1107
  28. M. S. Chen and D. W. Goodman, "An investigation of the $TiO_x$-$SiO_2$/Mo(112) interface", Surf. Sci., 574, 259 (2005). https://doi.org/10.1016/j.susc.2004.10.036
  29. R. Reiche, F. Yubero, J. P. Espinos and A. R. Gonzalez-Elipe, "Structure, microstructure and electronic characterisation of the $Al_2O_3$/$SiO_2$ interface by electron spectroscopies", Surf. Sci., 457, 199 (2000). https://doi.org/10.1016/S0039-6028(00)00375-7
  30. E. A. A. Jarvis and E. A. Carter, "Exploiting covalency to enhance metal-oxide and oxide-oxide adhesion at heterogeneous interfaces", J. Am. Ceram. Soc., 86(3), 373 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03309.x
  31. G. He, S. Toyoda, Y. Shimogaki and M. Oshima, 'Thermal stability and chemical bonding states of $AlO_xN_y$/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy", Appl. Surf. Sci., 257, 1638 (2010). https://doi.org/10.1016/j.apsusc.2010.08.113

Cited by

  1. Performance Enhancement of SOFC by ALD YSZ Thin Film Anode Interlayer vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.031