DOI QR코드

DOI QR Code

Tumorigenicity Evaluation of Umbilical Cord Blood-derived Mesenchymal Stem Cells

  • Park, Sang-Jin (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Kim, Hyun-Jung (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Kim, Woojin (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Kim, Ok-Sun (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Lee, Sunyeong (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Han, Su-Yeon (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Jeong, Eun Ju (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology) ;
  • Park, Hyun-shin (Research Institute, Genexine Co.) ;
  • Kim, Hea-Won (Research Institute, Genexine Co.) ;
  • Moon, Kyoung-Sik (Department of Toxicological Evaluation and Research, Korea Institute of Toxicology)
  • Received : 2015.11.24
  • Accepted : 2016.06.01
  • Published : 2016.07.15

Abstract

Mesenchymal stem cells (MSCs) have been identified in multiple types of tissue and exhibit characteristic self-renewal and multi-lineage differentiation abilities. However, the possibility of oncogenic transformation after transplantation is concerning. In this study, we investigated the tumorigenic potential of umbilical cord blood-derived MSCs (hUCB-MSCs) relative to MRC-5 and HeLa cells (negative and positive controls, respectively) both in vitro and in vivo. To evaluate tumorigenicity in vitro, anchorage-independent growth was assessed using the soft agar colony formation assay. hUCB-MSCs and MRC-5 cells formed few colonies, while HeLa cells formed a greater number of larger colonies, indicating that hUCB-MSCs and MRC-5 cells do not have anchorage-independent proliferation potential. To detect tumorigenicity in vivo, hUCB-MSCs were implanted as a single subcutaneous injection into BALB/c-nu mice. No tumor formation was observed in mice transplanted with hUCB-MSCs or MRC-5 cells based on macro- and microscopic examinations; however, all mice transplanted with HeLa cells developed tumors that stained positive for a human gene according to immunohistochemical analysis. In conclusion, hUCB-MSCs do not exhibit tumorigenic potential based on in vitro and in vivo assays under our experimental conditions, providing further evidence of their safety for clinical applications.

Keywords

References

  1. Lee, O.K., Kuo, T.K., Chen, W.M., Lee, K.D., Hsieh, S.L. and Chen. T.H. (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669-1675. https://doi.org/10.1182/blood-2003-05-1670
  2. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A. and Hoffman, R. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 30, 42-48. https://doi.org/10.1016/S0301-472X(01)00769-X
  3. Stamm, C., Westphal, B., Kleine, H.D., Petzsch, M., Kittner, C., Klinge, H., Schumichen, C., Nienaber, C.A., Freund, M. and Steinhoff, G. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361, 45-46. https://doi.org/10.1016/S0140-6736(03)12110-1
  4. Barry, F.P. and Murphy, J.M. (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol., 36, 568-584. https://doi.org/10.1016/j.biocel.2003.11.001
  5. Xu, W., Zhang, X., Qian, H., Zhu, W., Sun, X., Hu, J., Zhou, H. and Chen, Y. (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp. Biol. Med. (Maywood), 229, 623-631. https://doi.org/10.1177/153537020422900706
  6. Kassem, M. and Abdallah, B.M. (2008) Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res., 331, 157-163. https://doi.org/10.1007/s00441-007-0509-0
  7. Devine, S.M., Cobbs, C., Jennings, M., Bartholomew, A. and Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 101, 2999-3001. https://doi.org/10.1182/blood-2002-06-1830
  8. Houghton, J., Stoicov, C., Nomura, S., Rogers, A.B., Carlson, J., Li, H., Cai, X., Fox, J.G., Goldenring, J.R. and Wang, T.C. (2004) Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568-1571. https://doi.org/10.1126/science.1099513
  9. Goldring, C.E., Duffy, P.A., Benvenisty, N., Andrews, P.W., Ben-David, U., Eakins, R., French, N., Hanley, N.A., Kelly, L., Kitteringham, N.R., Kurth, J., Ladenheim, D., Laverty, H., McBlane, J., Narayanan, G., Patel, S., Reinhardt, J., Rossi, A., Sharpe, M. and Park, B.K. (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell, 8, 618-628. https://doi.org/10.1016/j.stem.2011.05.012
  10. Yu, K.R., Lee, J.Y., Kim, H.S., Hong, I.S., Choi, S.W., Seo, Y., Kang, I., Kim, J.J., Lee, B.C., Lee, S., Kurtz, A., Seo, K.W. and Kang, K.S. (2014) A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS ONE, 9, e102426. https://doi.org/10.1371/journal.pone.0102426
  11. Kim, H.S., Shin, T.H., Lee, B.C., Yu, K.R., Seo, Y., Lee, S., Seo, M.S., Hong, I.S., Choi, S.W., Seo, K.W., Nunez, G., Park, J.H. and Kang, K.S. (2013) Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2. Gastroenterology, 145, 1392-1403. https://doi.org/10.1053/j.gastro.2013.08.033
  12. Kawamata, S., Kanemura, H., Sakai, N., Takahashi, M. and Go, M.J. (2015) Design of a tumorigenicity test for induced pluripotent stem cell (iPSC)-derived cell products. J. Clin. Med., 4, 159-171. https://doi.org/10.3390/jcm4010159
  13. Chuah, M.K., Damme, A.V., Zwinnen, H., Goovaerts, I., Vanslembrouck, V., Collen, D. and Vandendriessche, T. (2000) Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum. Gene Ther., 11, 729-738. https://doi.org/10.1089/10430340050015626
  14. Campagnoli, C., Bellantuono, I., Kumar, S., Fairbairn, L.J., Roberts, I. and Fisk, N.M. (2002) High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy. BJOG, 109, 952-954. https://doi.org/10.1111/j.1471-0528.2002.t01-1-02011.x
  15. Fouillard, L., Bensidhoum, M., Bories, D., Bonte, H., Lopez, M., Moseley, A.M., Smith, A., Lesage, S., Beaujean, F., Thierry, D., Gourmelon, P., Najman, A. and Gorin, N.C. (2003) Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia, 17, 474-476. https://doi.org/10.1038/sj.leu.2402786
  16. Amado, L.C., Saliaris, A.P., Schulei, K.H., Marcus, S.J., Xie, J.S., Cattaneo, S., Durand, D.J., Fitton, T., Kuang, J.Q., Stewart, G., Lehrke, S., Baumgartner, W.W., Bradley, J.M., Heldman, A.W. and Hare, J.M. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A., 102, 11474-11479. https://doi.org/10.1073/pnas.0504388102
  17. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D. and Jorgensen, C. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837-3844. https://doi.org/10.1182/blood-2003-04-1193
  18. Sato, T., Sakai, T., Noguchi, Y., Takita, M., Hirakawa, S. and Ito, A. (2004) Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol. Oncol., 92, 47-56. https://doi.org/10.1016/j.ygyno.2003.09.012
  19. Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., Cao, W., Han, C. and Chen, Y. (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol., 80, 267-274. https://doi.org/10.1016/j.yexmp.2005.07.004
  20. Tolar, J., Nauta, A.J., Osborn, M.J., Panoskaltsis Mortari, A., McElmurry, R.T., Bell, S., Xia, L., Zhou, N., Riddle, M., Schroeder, T.M., Westendorf, J.J., McIvor, R.S., Hogendoorn, P.C., Szuhai, K., Oseth, L., Hirsch, B., Yant, S.R., Kay, M.A., Peister, A., Prockop, D.J., Fibbe, W.E. and Blazar, B.R. (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25, 371-379. https://doi.org/10.1634/stemcells.2005-0620
  21. Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., Toren, A., Constantini, S. and Rechavi, G. (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med., 6, e1000029. https://doi.org/10.1371/journal.pmed.1000029
  22. Shin, S.I., Freedman, V.H., Risser, R. and Pollack, R. (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl. Acad. Sci. U.S.A., 72, 4435-4439. https://doi.org/10.1073/pnas.72.11.4435
  23. Sabapathy, V., Ravi, V., Srivastava, V., Srivastava, A. and Kumar, S. (2012) Long-term cultured human term placentaderived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int., 2012, 174328.
  24. Sabapathy, V., Sundaram, B., V.M.S., Mankuzhy, P. and Kumar, S. (2014) Human Wharton's Jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS ONE, 9, e93726. https://doi.org/10.1371/journal.pone.0093726
  25. Ra, J.C., Shin, I.S., Kim, S.H., Kang, S.K., Kang, B.C., Lee, H.Y., Kim, Y.J., Jo, J.Y., Yoon, E.J., Choi, H.J. and Kwon, E. (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev., 20, 1297-1308. https://doi.org/10.1089/scd.2010.0466
  26. Lopez-Iglesias, P., Blazquez-Martinez, A., Fernandez-Delgado, J., Regadera, J., Nistal, M. and Miguel, M.P. (2011) Short and long term fate of human AMSC subcutaneously injected in mice. World J. Stem Cells, 3, 53-62. https://doi.org/10.4252/wjsc.v3.i6.53

Cited by

  1. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential vol.108, pp.10, 2017, https://doi.org/10.1111/cas.13334
  2. From cord to caudate: characterizing umbilical cord blood stem cells and their paracrine interactions with the injured brain vol.83, pp.1-2, 2018, https://doi.org/10.1038/pr.2017.251