DOI QR코드

DOI QR Code

희생층을 이용한 은 나노와이어 패터닝 공정 개발

Development of Ag Nanowire Patterning Process Using Sacrificial Layer

  • 하본희 (경북대학교 건설환경에너지공학부) ;
  • 조성진 (경북대학교 건설환경에너지공학부)
  • Ha, Bonhee (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • 투고 : 2016.05.03
  • 심사 : 2016.06.13
  • 발행 : 2016.07.01

초록

We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.

키워드

참고문헌

  1. J. A. Jeong, H. K. Kim, and J. Kim, Sol. Energ. Mat. Sol. C., 125, 113 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.003]
  2. Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Muller-Meskamp, and K. Leo, Adv. Funct. Mater., 23, 3763 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201203449]
  3. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, J. J. Kim, and J. W. Kang, Adv. Energy. Mater., 4, 1300474 (2014). https://doi.org/10.1002/aenm.201300474
  4. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, and Z. Xie, Sol. Energ. Mat. Sol. C., 244, 143 (2016). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.08.039]
  5. A. Catheline, F. Paolucci, G. Valenti, P. Poulin, and A. Penicaud, J. Mater. Res., 30, 2009 (2015). [DOI: http://dx.doi.org/10.1557/jmr.2015.166]
  6. M. J. Cha, S. M. Kim, S. J. Kang, J. H. Seo, and B. Walker, RSC Adv., 5, 65646 (2015). [DOI: http://dx.doi.org/10.1039/C5RA10838A]
  7. S. E. Park, S. Kim, D. Y. Lee, E. Kim, and J. Hwang, J. Mater. Chem. A, 1, 14286 (2013). [DOI: http://dx.doi.org/10.1039/c3ta13204h]
  8. Y. Ahn, H. Lee, D. Lee, and Y. Lee, ACS Appl. Mater. Interfaces, 6, 18401 (2014). [DOI: http://dx.doi.org/10.1021/am504462f]
  9. M. S. Kim, D. H. Lee, K. B. Kim, S. H. Jung, J. K. Lee, O. Beom-Hoan, S. G. Lee, and S. G. Park, Thin Solid Films, 587, 100 (2015). [DOI: http://dx.doi.org/10.1016/j.tsf.2015.02.028]
  10. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano. Res., 3, 564 (2010). [DOI: http://dx.doi.org/10.1007/s12274-010-0017-5]
  11. S. J. Henley, M. Cann, I. Jurewicz, A. Dalton, and D. Milne, Nanoscale, 6, 946 (2014). [DOI: http://dx.doi.org/10.1039/C3NR05504C]
  12. Z. Tan, W. Shi, C. Guo, Q. Zhang, L. Yang, X. Wu, G. Cheng, and R. Zheng, Nanoscale, 7, 17268 (2015). [DOI: http://dx.doi.org/10.1039/C5NR02876K]
  13. H. Oh, and M. Lee, Mater. Lett., 176, 110 (2016). [DOI: http://dx.doi.org/10.1016/j.matlet.2016.04.098]
  14. C. Chung, and M. Allen, J. Micromech. Microeng., 15, N1 (2005). [DOI: http://dx.doi.org/10.1088/0960-1317/15/1/021]
  15. D. E. Pesantez, E. K. Amponsah, and A. P. Gadre, Sens Actuators. B Chem., 132, 426 (2008). [DOI: http://dx.doi.org/10.1016/j.snb.2007.10.060]
  16. T. Sameshima, K. Yoshioka, and K. Takechi, Jpn. J. Appl. Phys., 44, 6421 (2005). [DOI: http://dx.doi.org/10.1143/JJAP.44.6421]