DOI QR코드

DOI QR Code

Development of a Planting Density-Growth-Harvest Chart for Common Ice Plant Hydroponically Grown in Closed-type Plant Production System

식물 생산 시스템에서 수경재배한 Common Ice Plant의 재식밀도-생육-수확 도표 개발

  • Cha, Mi-Kyung (Major of Plant Resources and Environment, Jeju National University) ;
  • Park, Kyoung Sub (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science) ;
  • Cho, Young-Yeol (Research Institute for Subtropical Agriculture and Animal Biotechnology, Jeju National University)
  • 차미경 (제주대학교 식물자원환경전공) ;
  • 박경섭 (국립원예특작과학원 시설원예연구소) ;
  • 조영열 (제주대학교 아열대농업생명과학연구소)
  • Received : 2016.02.25
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

In this study, a planting density-growth-harvest (PGH) chart was developed to easily read the growth and harvest factors such as crop growth rate, relative growth rate, shoot fresh weight, shoot dry weight, harvesting time, marketable rate, and marketable yield of common ice plant (Mesembryanthemum crystallinum L.). The plants were grown in a nutrient film technique (NFT) system in a closed-type plant factory using fluorescent lamps with three-band radiation under a light intensity of $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 12 h. Growth and yield were analyzed under four planting densities ($15{\times}10cm$, $15{\times}15cm$, $15{\times}20cm$, and $15{\times}25cm$). Shoot fresh and dry weights per plant increased at a higher planting density until reached an upper limit and yield per area was also same tendency. Crop growth rate, relative growth rate and lost time were described using quadratic equation. A linear relationship between shoot dry weight and fresh weights was observed. PGH chart was constructed based on the growth data and making equations. For instance, with within row spacing (= 20 cm) and fresh weight per plant at harvest (= 100 g), we can estimate all the growth and harvest factors of common ice plant. The planting density, crop growth rate, relative growth rate, lost time, shoot dry weight per plant, harvesting time, and yield were $33plants/m^2$, $20g{\cdot}m^{-2}{\cdot}d^{-1}$, $0.27g{\cdot}g^{-1}{\cdot}d^{-1}$, 22 days, 2.5 g/plant, 26 days after transplanting, and $3.2kg{\cdot}m^{-2}$, respectively. With this chart, we could easily obtain the growth factors such as planting density, crop growth rate, relative growth rate, lost time and the harvest factors such as shoot fresh and dry weights, harvesting time, marketable rate, and marketable yield with at least two parameters, for instance, planting distance and one of harvest factors of plant. PGH charts will be useful tools to estimate the growth and yield of crops and to practical design of a closed-type plant production system.

식물의 생육과 생산성을 예측하는 것은 매우 중요한 일이다. 본 연구는 common ice plant (Mesembryanthemum crystallinum L.)의 작물생장률, 상대생장률, 지상부 생체중과 건물중, 수확시기, 상품률과 상품수량과 같은 생육과 수확 요인들을 쉽게 읽을 수 있는 재식밀도-생육-수확(PGH) 도표를 만들기 위함이다. 광도 $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$과 일장 12시간 주기로, 3파장 형광등을 이용한 완전제어형 식물공장 시스템에서 박막수경 재배하였다. 4가지 재식밀도($15{\times}10cm$, $15{\times}15cm$, $15{\times}20cm$, and $15{\times}25cm$) 하에서 생육과 수량을 분석하였다. 재식밀도가 증가할수록 어느 한계까지는 식물체당 생체중과 건물중은 증가하는 경향이었으며, 단위면적당 생체중인 수량 또한 같은 경향을 보였다. 작물생장률, 상대생장률과 lost time은 2차 등식 형태를 보였으며, 지상부 생체중과 건물중은 직선적인 관계를 보였다. 이러한 등식을 이용하여 재식밀도-생육-수확(PGH) 도표를 만들었다. 예를 들면, $15{\times}20cm$ 재식밀도와 식물체당 생체 중 100g에서 수확할 경우, 재식주수, 작물생장률, 상대생장률, lost time, 식물체당 건물중, 수확시기와 수량은 각각 $33plants/m^2$, $20g{\cdot}m^{-2}{\cdot}d^{-1}$, $0.27g{\cdot}g^{-1}{\cdot}d^{-1}$, 22days, 2.5g/plant, 정식 후 26일과 $3.2kg{\cdot}m^{-2}$이었다. 이 도표를 가지고 적어도 2가지 요인 예를 들면, 재식밀도와 수확요인 중 하나만 알면, 작물생장률, 상대생장률, lost time과 같은 생육 요인과 지상부 생체중, 지상부 건물중, 수확시기와 수량과 같은 수확 요인들을 쉽게 구할 수 있다. 이러한 도표는 다양한 작물의 생육과 수량 요인을 예측할 수 있어 완전제어형 식물 생산 시스템 설계를 위해 유용한 도구가 될 것이다.

Keywords

References

  1. Agarie, S., A. kawaguchi, A. Kodera, H. Sunagawa, H. Kojima, A. Nose, and T. nakahara. 2009. Potential of the common ice plant, Mesembryanthemum crystallinum as a new high-functional food as evaluated by polyol accumulation. Plant Prod. Sci. 12:37-46. https://doi.org/10.1626/pps.12.37
  2. Cha, M.K., J.S. Kim, and Y.Y. Cho. 2014. Growth model of common ice plant (Mesembryanthemum crystallinum L.) using expolinear functions in a closed-type plant production system. Kor. J. Hort. Sci. Technol. 32:493-498 (in Korean).
  3. Cavero, J., R.G. Ortega, and M. Gutierrez. 2001. Plant density affects yield, yield components, and color of direct-seeded paprika pepper. HortScience 36:76-79.
  4. Dennett, M.D. and K.H.M. Ishag. 1998. Use of the expolinear growth model to analyze the growth of faba bean, peas and lentils at three densities: Predictive use of the model. Ann. Bot. 82:507-512. https://doi.org/10.1006/anbo.1998.0709
  5. Goudriaan, J. and J.L. Monteith. 1990. A mathematical function for crop growth based on light interception and leaf area expansion. Ann. Bot. 66:695-701. https://doi.org/10.1093/oxfordjournals.aob.a088084
  6. Heuvelink, E. 1995. Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.). Sci. Hort. 64:193-201. https://doi.org/10.1016/0304-4238(95)00839-X
  7. Heuvelink, E. and L.F. M. Marcelis. 1989. Dry matter distribution in tomato and cucumber. Acta Hort. 260:149-157.
  8. Ishag, K.H.M. and M.D. Dennett. 1998. Use of the expolinear growth model to analyze the growth of faba bean, peas and lentils at three densities: Fitting the model. Ann. Bot. 82:497-505. https://doi.org/10.1006/anbo.1998.0708
  9. Kahn, B.A., J.R. Cooksey, and J.E. Motes. 1997. Within-row spacing effects on traits of importance to mechanical harvest in paprika-type peppers. Sci. Hort. 69:31-39. https://doi.org/10.1016/S0304-4238(96)00981-8
  10. Kultur, F., H.C. Harrison, and J.E. Staub. 2001. Spacing and genotype affect fruit sugar concentration, yield, and fruit size of muskmelon. HortScience 36:274-278.
  11. Lee, J.H., J. Goudriaan, and H. Challa. 2003. Using the expolinear growth equation for modeling crop growth in yearround cut chrysanthemum. Ann. Bot. 92:697-708. https://doi.org/10.1093/aob/mcg195
  12. Leskovar, D.I., L.A. Stein, and F.J. Dainello. 2000. Planting systems influence growth dynamics and quality of fresh market spinach. HortScience 35:1238-1240.
  13. Locascio, S.J. and W.M. Stall. 1994. Bell pepper yield as influenced by plant spacing and row arrangement. J. Amer. Soc. Hort. Sci. 119:899-902.
  14. Marcelis, L.F.M., E. Heuvelink, and J. Goudriaan. 1998. Modelling biomass production and yield of horticultural crops: A review. Sci. Hort. 74:83-111. https://doi.org/10.1016/S0304-4238(98)00083-1
  15. Maynard, E.T. and W.D. Scott. 1998. Plant spacing affects yield of 'Superstar' muskmelon. HortScience 33:52-54.
  16. Motsenbocker, C.E. 1996. In-row plant spacing affects growth and yield of pepperoncini pepper. HortScience 31:198-200.
  17. Papadopoulos, A.P. and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): A review. Sci. Hort. 69:1-29. https://doi.org/10.1016/S0304-4238(96)00983-1
  18. Reiners, S. and D.I.M. Riggs. 1999. Plant population affects yield and fruit size of pumpkin. HortScience 34:1076-1078.
  19. Sanders, D.C., J.D. Cure, and J.R. Schultheis. 1999. Yield response of watermelon to plant density, planting pattern, and polyethylene mulch. HortScience 34:1221-1223.
  20. Schultheis, J.R., S.A. Walters, D.E. Adams, and E.A. Esters. 1999. In-row plant spacing and date of harvest of ‘Beauregard’ sweet potato affect yield and return on investment. HortScience 34:1229-1233.