Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Adam, C., Bouabdallah, S., Zarroug, M. and Maitournam, H. (2014), "Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams", Comput. Meth. Appl. Mech. Eng., 279, 1-28. https://doi.org/10.1016/j.cma.2014.06.023
- Auciello, N.M. and Rosa, M.A. (1994), "Free vibrations of circular arches: a review", J. Sound Vib., 176(4), 433-458. https://doi.org/10.1006/jsvi.1994.1388
- Ball, R.E. (1967), "Dynamic analysis of rings by finite differences", ASCE J. Eng. Mech. Div., 93, 1-10.
- Bickford, W.B. and Strom, B.T. (1975), "Vibration of plane curved beams", J. Sound Vib., 39, 135-146. https://doi.org/10.1016/S0022-460X(75)80213-6
- Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Company, New York, USA.
- Bouclier, R., Elguedj, T. and Combescure, A. (2012), "Locking free isogeometric formulations of curved thick beams", Comput. Meth. Appl. Mech. Eng., 245-246, 144-162. https://doi.org/10.1016/j.cma.2012.06.008
- Chidamparam, P. and Leissa, A.W. (1993), "Vibrations of planar curved beams, rings, and arches", ASME Appl. Mech. Rev., 46(9), 476-483.
- Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley& Sons Ltd., London, UK.
- Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
- Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of NURBS finite elements", Comput. Meth. Appl. Mech. Eng., 199(5-8), 374-382. https://doi.org/10.1016/j.cma.2009.02.035
- Eisenberger, M. and Efraim, E. (2001), "In-plane vibrations of shear deformable curved beams", Int. J. Numer. Meth. Eng., 52, 1221-1234. https://doi.org/10.1002/nme.246
- Elguedj, T., Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), " B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements", Comput. Meth. Appl. Mech. Eng., 197, 2732-2762. https://doi.org/10.1016/j.cma.2008.01.012
- Howson, W.P. and Jemah, A.K. (1999), "Exact out-of-plane natural frequencies of curved Timoshenko beams", ASCE J. Eng. Mech., 125(1), 19-25. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(19)
- Huang, C.S., Tseng, Y.P., Chang, S.H. and Hung, C.L. (2000), "Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method", Int. J. Solid. Struct., 37(3), 495-513. https://doi.org/10.1016/S0020-7683(99)00017-7
- Huang, C.S., Tseng, Y.P., Leissa, A.W. and Nieh, K.Y. (1998), "An exact solution for in-plane vibrations of an arch having variable curvature and cross section", Int. J. Mech. Sci., 40(11), 1159-1173. https://doi.org/10.1016/S0020-7403(98)00020-4
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric Analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Ishaquddin, M.D., Raveendranath, P. and Reddy, J.N. (2012), "Flexure and torsion locking phenomena in out-of-plane deformation of Timoshenko curved beam element", Finite Elem. Anal. Des., 51, 22-30. https://doi.org/10.1016/j.finel.2011.11.002
- Ishaquddin, M.D., Raveendranath, P. and Reddy, J.N. (2013), "Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the Timoshenko and Euler-Bernoulli curved beam elements", Finite Elem. Anal. Des., 65, 17-31. https://doi.org/10.1016/j.finel.2012.10.005
- Kang, B., Riedel, C.H. and Tan, C.A. (2003), "Free vibration analysis of planar curved beams by wave propagation", J. Sound Vib., 260(1), 19-44. https://doi.org/10.1016/S0022-460X(02)00898-2
- Kang, K., Bert, C. and Striz, H. (1995), "Vibration analysis of shear deformation circular arches by the differential quadrature method", J. Sound Vib., 181(2), 353-360.
- Kim, B.Y., Kim, C.B., Song, S.G. and Beom, H.G. and Cho C.D. (2009), "A finite thin circular beam element for out-of-plane vibration analysis of curved beams", J. Mech. Sci. Tech., 23(5), 1396-1405. https://doi.org/10.1007/s12206-008-1213-2
- Kim, H.J., Seo, Y.D. and Youn, S.K. (2009), "Isogeometric analysis for trimmed CAD surfaces", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2982-2995. https://doi.org/10.1016/j.cma.2009.05.004
- Lee, B.K., Oh, S.J., Mo, J.M. and Lee, T.E. (2008), "Out-of-plane free vibrations of curved beams with variable curvature", J. Sound Vib., 318(1/2), 227-246. https://doi.org/10.1016/j.jsv.2008.04.015
- Lee, J. and Schultz, W.W. (2004), "Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method", J. Sound Vib., 269, 609-621. https://doi.org/10.1016/S0022-460X(03)00047-6
- Lee, S.J. and Park, K.S. (2013), "Vibrations of Timoshenko beams with isogeometric approach", Appl. Math. Model., 37(22), 9174-9190. https://doi.org/10.1016/j.apm.2013.04.034
- Luu, A.T., Kim, N.I. and Lee, J. (2015), "Isogeometric vibration analysis of free-form Timoshenko curved beams", Meccanica, 50(1), 169-187. https://doi.org/10.1007/s11012-014-0062-3
- Mochida, Y. and Ilanko, S. (2016), "Condensation of independent variables in free vibration analysis of curved beams", Adv. Aircraft Spacecraft Sci., 3(1), 45-59. https://doi.org/10.12989/aas.2016.3.1.045
- Oh, S.J., Lee, B.K. and Lee, I.W. (1999), "Natural frequencies of non-circular arches with rotatory inertia and shear deformation", J. Sound Vib., 219(1), 23-33. https://doi.org/10.1006/jsvi.1998.1822
- Piegl, L. and Tiller, W. (1997), The NURBS Book, 2nd Edition, Springer-Verlag, New York, USA.
- Raveendranath, P., Gajbir, S.G. and Venkateswara, R. (2001), "A three-noded shear-flexible curved beam element based on coupled displacement field interpolations", Int. J. Numer. Meth. Eng., 51, 85-101. https://doi.org/10.1002/nme.160
- Tufekci, E. and Arpaci, A. (1998), "Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects", J. Sound Vib., 209(5), 845-856. https://doi.org/10.1006/jsvi.1997.1290
- Tufekci, E., Dogruer, O.Y. (2006), "Out-of-plane free vibration of a circular arch with uniform cross-section: Exact solution", J. Sound Vib., 291, 525-538. https://doi.org/10.1016/j.jsv.2005.06.008
- Wang, D.D. and Zhang, H.J. (2014), "A consistently coupled isogeometric-meshfree method", Comput. Meth. Appl. Mech. Eng., 268, 843-870. https://doi.org/10.1016/j.cma.2013.10.014
- Wang, D.D., Liu, W. and Zhang, H.J. (2013), "Novel higher order mass matrices for isogeometric structural vibration analysis", Comput. Meth. Appl. Mech. Eng., 260, 92-108. https://doi.org/10.1016/j.cma.2013.03.011
- Wang, D.D., Liu, W. and Zhang, H.J. (2015), "Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices", Comput. Meth. Appl. Mech. Eng., 286, 230-267. https://doi.org/10.1016/j.cma.2014.12.026
- Weeger, O., Wever, U. and Simeon B. (2013), "Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations", Nonlin. Dyn., 72(4), 813-835. https://doi.org/10.1007/s11071-013-0755-5
- Wu, J.S. and Chiang, L.K. (2003), "Free vibration analysis of arches using curved beam elements", Int. J. Numer. Meth. Eng., 58, 1907-1936. https://doi.org/10.1002/nme.837
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2008), "Free in-plane vibration of general curved beams using finite element method", J. Sound Vib., 318(4-5), 850-867. https://doi.org/10.1016/j.jsv.2008.04.041
- Ye, K.S. and Zhao, X.J. (2012), "Dynamic stiffness method for out-of-plane free vibration analysis of planar curved beams", Eng. Mech., 29(3), 1-8.
Cited by
- Locking Removal Techniques for the Isogeometric Formulation of Curved Beams vol.1144, 2017, https://doi.org/10.4028/www.scientific.net/AMR.1144.109
- Explicit isogeometric topology optimization using moving morphable components vol.326, 2017, https://doi.org/10.1016/j.cma.2017.08.021
- Isogeometric buckling analysis of composite variable-stiffness panels vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.016
- B++ splines with applications to isogeometric analysis vol.311, 2016, https://doi.org/10.1016/j.cma.2016.08.029
- Initial solution estimation for one-step inverse isogeometric analysis in sheet metal stamping vol.330, 2018, https://doi.org/10.1016/j.cma.2017.10.018
- A quadrature-based superconvergent isogeometric frequency analysis with macro-integration cells and quadratic splines vol.320, 2017, https://doi.org/10.1016/j.cma.2017.03.041
- Smooth size design for the natural frequencies of curved Timoshenko beams using isogeometric analysis pp.1615-1488, 2019, https://doi.org/10.1007/s00158-018-2119-8
- Pre-bent shape design of full free-form curved beams using isogeometric method and semi-analytical sensitivity analysis pp.1615-1488, 2018, https://doi.org/10.1007/s00158-018-2041-0
- Semi-analytical solution of horizontally composite curved I-beam with partial slip vol.27, pp.1, 2016, https://doi.org/10.12989/scs.2018.27.1.001
- A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes vol.339, pp.None, 2016, https://doi.org/10.1016/j.cma.2018.04.048
- Superconvergent Isogeometric Transient Analysis of Wave Equations vol.20, pp.8, 2016, https://doi.org/10.1142/s0219455420500832
- Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves vol.61, pp.3, 2016, https://doi.org/10.1007/s00158-019-02398-1
- Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis vol.49, pp.3, 2016, https://doi.org/10.5937/fme2103615n
- Isogeometric Free Vibration Analysis of Curved Euler-Bernoulli Beams with Particular Emphasis on Accuracy Study vol.21, pp.1, 2021, https://doi.org/10.1142/s0219455421500115