DOI QR코드

DOI QR Code

Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams

  • Liu, Hongliang (Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology) ;
  • Zhu, Xuefeng (School of Automobile Engineering, Dalian University of Technology) ;
  • Yang, Dixiong (Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology)
  • Received : 2015.07.15
  • Accepted : 2016.05.05
  • Published : 2016.08.10

Abstract

In-plane and out-of-plane free vibration analysis of Timoshenko curved beams is addressed based on the isogeometric method, and an effective scheme to avoid numerical locking in both of the two patterns is proposed in this paper. The isogeometric computational model takes into account the effects of shear deformation, rotary inertia and axis extensibility of curved beams, and is applicable for uniform circular beams, and more complicated variable curvature and cross-section beams as illustrated by numerical examples. Meanwhile, it is shown that, the $C^{p-1}$-continuous NURBS elements remarkably have higher accuracy than the finite elements with the same number of degrees of freedom. Nevertheless, for in-plane or out-of-plane vibration analysis of Timoshenko curved beams, the NURBS-based isogeometric method also exhibits locking effect to some extent. To eliminate numerical locking, the selective reduced one-point integration and $\bar{B}$ projection element based on stiffness ratio is devised to achieve locking free analysis for in-plane and out-of-plane models, respectively. The suggested integral schemes for moderately slender models obtain accurate results in both dominated and non-dominated regions of locking effect. Moreover, this strategy is effective for beam structures with different slenderness. Finally, the influence factors of structural parameters of curved beams on their natural frequency are scrutinized.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Adam, C., Bouabdallah, S., Zarroug, M. and Maitournam, H. (2014), "Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams", Comput. Meth. Appl. Mech. Eng., 279, 1-28. https://doi.org/10.1016/j.cma.2014.06.023
  2. Auciello, N.M. and Rosa, M.A. (1994), "Free vibrations of circular arches: a review", J. Sound Vib., 176(4), 433-458. https://doi.org/10.1006/jsvi.1994.1388
  3. Ball, R.E. (1967), "Dynamic analysis of rings by finite differences", ASCE J. Eng. Mech. Div., 93, 1-10.
  4. Bickford, W.B. and Strom, B.T. (1975), "Vibration of plane curved beams", J. Sound Vib., 39, 135-146. https://doi.org/10.1016/S0022-460X(75)80213-6
  5. Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Company, New York, USA.
  6. Bouclier, R., Elguedj, T. and Combescure, A. (2012), "Locking free isogeometric formulations of curved thick beams", Comput. Meth. Appl. Mech. Eng., 245-246, 144-162. https://doi.org/10.1016/j.cma.2012.06.008
  7. Chidamparam, P. and Leissa, A.W. (1993), "Vibrations of planar curved beams, rings, and arches", ASME Appl. Mech. Rev., 46(9), 476-483.
  8. Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009), Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley& Sons Ltd., London, UK.
  9. Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
  10. Echter, R. and Bischoff, M. (2010), "Numerical efficiency, locking and unlocking of NURBS finite elements", Comput. Meth. Appl. Mech. Eng., 199(5-8), 374-382. https://doi.org/10.1016/j.cma.2009.02.035
  11. Eisenberger, M. and Efraim, E. (2001), "In-plane vibrations of shear deformable curved beams", Int. J. Numer. Meth. Eng., 52, 1221-1234. https://doi.org/10.1002/nme.246
  12. Elguedj, T., Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), " B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements", Comput. Meth. Appl. Mech. Eng., 197, 2732-2762. https://doi.org/10.1016/j.cma.2008.01.012
  13. Howson, W.P. and Jemah, A.K. (1999), "Exact out-of-plane natural frequencies of curved Timoshenko beams", ASCE J. Eng. Mech., 125(1), 19-25. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(19)
  14. Huang, C.S., Tseng, Y.P., Chang, S.H. and Hung, C.L. (2000), "Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method", Int. J. Solid. Struct., 37(3), 495-513. https://doi.org/10.1016/S0020-7683(99)00017-7
  15. Huang, C.S., Tseng, Y.P., Leissa, A.W. and Nieh, K.Y. (1998), "An exact solution for in-plane vibrations of an arch having variable curvature and cross section", Int. J. Mech. Sci., 40(11), 1159-1173. https://doi.org/10.1016/S0020-7403(98)00020-4
  16. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric Analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  17. Ishaquddin, M.D., Raveendranath, P. and Reddy, J.N. (2012), "Flexure and torsion locking phenomena in out-of-plane deformation of Timoshenko curved beam element", Finite Elem. Anal. Des., 51, 22-30. https://doi.org/10.1016/j.finel.2011.11.002
  18. Ishaquddin, M.D., Raveendranath, P. and Reddy, J.N. (2013), "Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the Timoshenko and Euler-Bernoulli curved beam elements", Finite Elem. Anal. Des., 65, 17-31. https://doi.org/10.1016/j.finel.2012.10.005
  19. Kang, B., Riedel, C.H. and Tan, C.A. (2003), "Free vibration analysis of planar curved beams by wave propagation", J. Sound Vib., 260(1), 19-44. https://doi.org/10.1016/S0022-460X(02)00898-2
  20. Kang, K., Bert, C. and Striz, H. (1995), "Vibration analysis of shear deformation circular arches by the differential quadrature method", J. Sound Vib., 181(2), 353-360.
  21. Kim, B.Y., Kim, C.B., Song, S.G. and Beom, H.G. and Cho C.D. (2009), "A finite thin circular beam element for out-of-plane vibration analysis of curved beams", J. Mech. Sci. Tech., 23(5), 1396-1405. https://doi.org/10.1007/s12206-008-1213-2
  22. Kim, H.J., Seo, Y.D. and Youn, S.K. (2009), "Isogeometric analysis for trimmed CAD surfaces", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2982-2995. https://doi.org/10.1016/j.cma.2009.05.004
  23. Lee, B.K., Oh, S.J., Mo, J.M. and Lee, T.E. (2008), "Out-of-plane free vibrations of curved beams with variable curvature", J. Sound Vib., 318(1/2), 227-246. https://doi.org/10.1016/j.jsv.2008.04.015
  24. Lee, J. and Schultz, W.W. (2004), "Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method", J. Sound Vib., 269, 609-621. https://doi.org/10.1016/S0022-460X(03)00047-6
  25. Lee, S.J. and Park, K.S. (2013), "Vibrations of Timoshenko beams with isogeometric approach", Appl. Math. Model., 37(22), 9174-9190. https://doi.org/10.1016/j.apm.2013.04.034
  26. Luu, A.T., Kim, N.I. and Lee, J. (2015), "Isogeometric vibration analysis of free-form Timoshenko curved beams", Meccanica, 50(1), 169-187. https://doi.org/10.1007/s11012-014-0062-3
  27. Mochida, Y. and Ilanko, S. (2016), "Condensation of independent variables in free vibration analysis of curved beams", Adv. Aircraft Spacecraft Sci., 3(1), 45-59. https://doi.org/10.12989/aas.2016.3.1.045
  28. Oh, S.J., Lee, B.K. and Lee, I.W. (1999), "Natural frequencies of non-circular arches with rotatory inertia and shear deformation", J. Sound Vib., 219(1), 23-33. https://doi.org/10.1006/jsvi.1998.1822
  29. Piegl, L. and Tiller, W. (1997), The NURBS Book, 2nd Edition, Springer-Verlag, New York, USA.
  30. Raveendranath, P., Gajbir, S.G. and Venkateswara, R. (2001), "A three-noded shear-flexible curved beam element based on coupled displacement field interpolations", Int. J. Numer. Meth. Eng., 51, 85-101. https://doi.org/10.1002/nme.160
  31. Tufekci, E. and Arpaci, A. (1998), "Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects", J. Sound Vib., 209(5), 845-856. https://doi.org/10.1006/jsvi.1997.1290
  32. Tufekci, E., Dogruer, O.Y. (2006), "Out-of-plane free vibration of a circular arch with uniform cross-section: Exact solution", J. Sound Vib., 291, 525-538. https://doi.org/10.1016/j.jsv.2005.06.008
  33. Wang, D.D. and Zhang, H.J. (2014), "A consistently coupled isogeometric-meshfree method", Comput. Meth. Appl. Mech. Eng., 268, 843-870. https://doi.org/10.1016/j.cma.2013.10.014
  34. Wang, D.D., Liu, W. and Zhang, H.J. (2013), "Novel higher order mass matrices for isogeometric structural vibration analysis", Comput. Meth. Appl. Mech. Eng., 260, 92-108. https://doi.org/10.1016/j.cma.2013.03.011
  35. Wang, D.D., Liu, W. and Zhang, H.J. (2015), "Superconvergent isogeometric free vibration analysis of Euler-Bernoulli beams and Kirchhoff plates with new higher order mass matrices", Comput. Meth. Appl. Mech. Eng., 286, 230-267. https://doi.org/10.1016/j.cma.2014.12.026
  36. Weeger, O., Wever, U. and Simeon B. (2013), "Isogeometric analysis of nonlinear Euler-Bernoulli beam vibrations", Nonlin. Dyn., 72(4), 813-835. https://doi.org/10.1007/s11071-013-0755-5
  37. Wu, J.S. and Chiang, L.K. (2003), "Free vibration analysis of arches using curved beam elements", Int. J. Numer. Meth. Eng., 58, 1907-1936. https://doi.org/10.1002/nme.837
  38. Yang, F., Sedaghati, R. and Esmailzadeh, E. (2008), "Free in-plane vibration of general curved beams using finite element method", J. Sound Vib., 318(4-5), 850-867. https://doi.org/10.1016/j.jsv.2008.04.041
  39. Ye, K.S. and Zhao, X.J. (2012), "Dynamic stiffness method for out-of-plane free vibration analysis of planar curved beams", Eng. Mech., 29(3), 1-8.

Cited by

  1. Locking Removal Techniques for the Isogeometric Formulation of Curved Beams vol.1144, 2017, https://doi.org/10.4028/www.scientific.net/AMR.1144.109
  2. Explicit isogeometric topology optimization using moving morphable components vol.326, 2017, https://doi.org/10.1016/j.cma.2017.08.021
  3. Isogeometric buckling analysis of composite variable-stiffness panels vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.016
  4. B++ splines with applications to isogeometric analysis vol.311, 2016, https://doi.org/10.1016/j.cma.2016.08.029
  5. Initial solution estimation for one-step inverse isogeometric analysis in sheet metal stamping vol.330, 2018, https://doi.org/10.1016/j.cma.2017.10.018
  6. A quadrature-based superconvergent isogeometric frequency analysis with macro-integration cells and quadratic splines vol.320, 2017, https://doi.org/10.1016/j.cma.2017.03.041
  7. Smooth size design for the natural frequencies of curved Timoshenko beams using isogeometric analysis pp.1615-1488, 2019, https://doi.org/10.1007/s00158-018-2119-8
  8. Pre-bent shape design of full free-form curved beams using isogeometric method and semi-analytical sensitivity analysis pp.1615-1488, 2018, https://doi.org/10.1007/s00158-018-2041-0
  9. Semi-analytical solution of horizontally composite curved I-beam with partial slip vol.27, pp.1, 2016, https://doi.org/10.12989/scs.2018.27.1.001
  10. A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes vol.339, pp.None, 2016, https://doi.org/10.1016/j.cma.2018.04.048
  11. Superconvergent Isogeometric Transient Analysis of Wave Equations vol.20, pp.8, 2016, https://doi.org/10.1142/s0219455420500832
  12. Explicit isogeometric topology optimization based on moving morphable voids with closed B-spline boundary curves vol.61, pp.3, 2016, https://doi.org/10.1007/s00158-019-02398-1
  13. Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis vol.49, pp.3, 2016, https://doi.org/10.5937/fme2103615n
  14. Isogeometric Free Vibration Analysis of Curved Euler-Bernoulli Beams with Particular Emphasis on Accuracy Study vol.21, pp.1, 2021, https://doi.org/10.1142/s0219455421500115