DOI QR코드

DOI QR Code

Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures

  • Received : 2016.03.20
  • Accepted : 2016.04.28
  • Published : 2016.03.25

Abstract

In bonded composite repair of aircraft structures, the damage of the adhesive can thus reduce significantly the efficiency and the durability of the bonded composite repair. The adhesive damage models using critical zone have proven their effectiveness due to simplicity and ap-plicability of the damage criteria in these models. The scope of this study is to analyze the effects of the patch thickness and the adhesive thickness on the damage damage in bonded composite repair of aircraft structures by using modified damage zone theory. The obtained results show that, when the thickness of adhesive increases the damage zone increases and the adhesive loses its rigidity, inversely when the patch is reduced the adhesive damage be-comes more significant.

Keywords

Acknowledgement

Supported by : King Saud University

References

  1. ABAQUS/CAE Ver 6.9 (2007), User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
  2. Alderliesten, R.C. (2009), "Damage tolerance of bonded aircraft structures", Int. J. Fatigue, 31(6), 1024-1030. https://doi.org/10.1016/j.ijfatigue.2008.05.001
  3. Apalak, M.K., Apalak, Z.G. and Gunes, R. (2004), "Thermal and geometrically nonlinear stress analyses of an adhesively bonded composite tee joint with double support", J. Therm. Compos. Mater., 17(2), 103-136. https://doi.org/10.1177/0892705704033337
  4. Atluri, S.N. (1997), Structural integrity and durability, Forsyth, Georgia, USA, Tech Science Press.
  5. Baker, A.A. and Chester, R.J. (1993), "Recent advances in bonded composite repair technology for metallic aircraft components", Proceeding of the International Conference on Ad Comp Materials, 45-9.
  6. Baker, A.A. and Jones, R. (1988), Bonded repair of aircraft structures, Dordrecht: Martinus Nijhoff.
  7. Ban, C.S., Lee, Y.H., Choi, J.H. and Kweon, J.H. (2008), "Strength prediction of adhesive joints using the modified damage zone theory", Compos. Struct., 86(1), 96-100. https://doi.org/10.1016/j.compstruct.2008.03.016
  8. Beloufa, H., Ouinas, D., Tarfaoui, M. and Benderdouche, N. (2016), "Effect of stacking sequence of the bonded composite patch on repair performance", Struct. Eng. Mech., 57(2), 295-313. https://doi.org/10.12989/sem.2016.57.2.295
  9. Bouiadjra, B.B., Oudad, W., Albedah, A., Benyahia, F. and Belhouari, M. (2012), "Effects of the adhesive disband on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95. https://doi.org/10.1016/j.matdes.2011.12.028
  10. Bouiadjra, B.B., Ouinas, D., Serier, B. and Benderdouche, N. (2008), "Disbond effects on bonded boron/epoxy composite repair to aluminium plates", Comput. Mater. Sci., 42(2), 220-227. https://doi.org/10.1016/j.commatsci.2007.07.008
  11. Callinan, R.J., Sanderson, S. and Keeley, D. (1997), Finite element analysis of an F-111 lower wing skin fatigue crack repair, DSTO, Melbourne, DSTO-TN-0067.
  12. Caminero, M.A., Pavlopoulou, S., Lopez-Pedrosa, M., Nicolaisson, B.G., Pinna, C. and Soutis, C. (2013), "Analysis of adhesively bonded repairs in composites: damage detection and prognosis", Compos. Struct., 95, 500-517. https://doi.org/10.1016/j.compstruct.2012.07.028
  13. Chow, W. and Atluri, S. (1997), "Composite patch repairs of metal structures: adhesive nonlinearity, thermal cycling, and debonding", AIAA J., 35(9), 1528-1535. https://doi.org/10.2514/2.7481
  14. Crocombe, A.D., Richardson, G. and Smith, P.A. (1995), "A unified approach for predicting the strength of cracked and non-cracked adhesive joints", J. Adhesion, 49(3-4), 211-244. https://doi.org/10.1080/00218469508014357
  15. Hart-Smith, L.J. (1985), The design of repairable advanced composite structures, Douglas Paper 7550, McDonnell Douglas, Douglas Aircraft Company.
  16. Jones, R. and Chiu, W.K. (1999), "Composite repairs to cracks in thick metallic components", Compos. Struct., 44(1), 17-29. https://doi.org/10.1016/S0263-8223(98)00108-1
  17. Lena, M.R., Klug, J.C. and Sun, C.T. (1998), "Composite patches as reinforcements and crack arrestors in aircraft structures", J. Aircraft, 35(2), 318-323. https://doi.org/10.2514/2.2302
  18. Magalhaes, A.G., De Moura, M.F.S.F. and GonCalves, J.P.M. (2005), "Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials", Int. J. Adhes. Adhes., 25(4), 313-319. https://doi.org/10.1016/j.ijadhadh.2004.10.002
  19. Oudad, W., Bouiadjra, B.B., Belhouari, M., Touzain, S. and Feaugas, X. (2009), "Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures", Comput. Mater. Sci., 46(4), 950-954. https://doi.org/10.1016/j.commatsci.2009.04.041
  20. Ouinas, D., Bouiadjra, B.B. and Serier, B. (2007), "The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials", Compos. Struct., 78(2), 278-284. https://doi.org/10.1016/j.compstruct.2005.10.012
  21. Ouinas, D., Bouiadjra, B.B., Achour, T. and Benderdouche, N. (2010), "Influence of disbond on notch crack behaviour in single bonded lap joints", Mater. Des., 31(9), 4356-4362. https://doi.org/10.1016/j.matdes.2010.03.048
  22. Ouinas, D., Bouiadjra, B.B., Himouri, S. and Benderdouche, N. (2012), "Progressive edge cracked aluminium plate repaired with adhesively bonded composite patch under full width disbond", Compos. Part B: Eng., 43(2), 805-811. https://doi.org/10.1016/j.compositesb.2011.08.022
  23. Papanikos, P., Tserpes, K.I. and Pantelakis, S. (2007), "Initiation and progression of composite patch debonding in adhesively repaired cracked metallic sheets", Compos. Struct., 81(2), 303-311. https://doi.org/10.1016/j.compstruct.2006.08.022
  24. Poole, P. (2002), "Graphite/epoxy patching efficiency studies", Adv. Bond. Compos. Repair. Metal. Aircraft Struct., 1, 415-41. https://doi.org/10.1016/B978-008042699-0/50017-6
  25. Qing, X.P., Beard, S.J., Kumar, A. and Hannum, R. (2006), "A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure", Smart Mater. Struct., 15(3), N66. https://doi.org/10.1088/0964-1726/15/3/N03
  26. Rose, L.R.F. (1982), "A cracked plate repaired by bonded reinforcements", Int. J. Fract., 18(2), 135-144. https://doi.org/10.1007/BF00019638
  27. Sheppard, A., Kelly, D. and Tong, L. (1998), "A damage zone model for the failure analysis of adhesively bonded joints", Int. J. Adhes. Adhes., 18(6), 385-400. https://doi.org/10.1016/S0143-7496(98)00024-4
  28. Xu, W. and Wei, Y. (2012), "Strength and interface failure mechanism of adhesive joints", Int. J. Adhes. Adhes., 34, 80-92. https://doi.org/10.1016/j.ijadhadh.2011.12.004

Cited by

  1. Numerical Investigation of the Adhesive Damage Used for the Repair of A5083 H11 Aluminum Structures by Composites Patches vol.44, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/jera.44.22
  2. Using CZM and XFEM to predict the damage to aluminum notched plates reinforced with a composite patch vol.15, pp.2, 2020, https://doi.org/10.2140/jomms.2020.15.185