참고문헌
- Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7):506-514. https://doi.org/10.1038/nphoton.2014.134
- Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science, 267(5203):1473-1476. https://doi.org/10.1126/science.267.5203.1473
- Mitzi, D. B., Chondroudis, K., & Kagan, C. R. (2001). Organicinorganic electronics. IBM journal of research and development, 45(1):29-45. https://doi.org/10.1147/rd.451.0029
- NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed April 19, 2016).
- Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050-6051. https://doi.org/10.1021/ja809598r
- Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10):4088-4093. https://doi.org/10.1039/c1nr10867k
- Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Gratzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2.
- Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 338(6107):643-647. https://doi.org/10.1126/science.1228604
- Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., ... & Gratzel, M. (2013). Efficient inorganic- organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6):486-491. https://doi.org/10.1038/nphoton.2013.80
- Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters, 13(4):1764-1769. https://doi.org/10.1021/nl400349b
- Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Gratzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature,
- Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467):395-398. https://doi.org/10.1038/nature12509
- Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature materials, 13(9):897-903. https://doi.org/10.1038/nmat4014
- Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535):476-480. https://doi.org/10.1038/nature14133
- Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240):1234-1237. https://doi.org/10.1126/science.aaa9272
- Hwang, I., Jeong, I., Lee, J., Ko, M. J., & Yong, K. (2015). Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS applied materials & interfaces, 7(31):17330-17336. https://doi.org/10.1021/acsami.5b04490
- Chen, Q., De Marco, N., Yang, Y. M., Song, T. B., Chen, C. C., Zhao, H., ... & Yang, Y. (2015). Under the spotlight: The organic- inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10(3):355-396. https://doi.org/10.1016/j.nantod.2015.04.009
- Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., Van Schilfgaarde, M., & Walsh, A. (2014). Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters, 14(5):2584-2590. https://doi.org/10.1021/nl500390f
-
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability of
$CH_3NH_3PbI_3$ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2(3):705-710. https://doi.org/10.1039/C3TA13606J -
Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized
$TiO_2$ with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4. -
Ito, S., Tanaka, S., Manabe, K., & Nishino, H. (2014). Effects of surface blocking layer of
$Sb_2S_3$ on nanocrystalline$TiO_2$ for$CH_3NH_3PbI_3$ perovskite solar cells. The Journal of Physical Chemistry C, 118(30):16995-17000. https://doi.org/10.1021/jp500449z - Guo, X. D., Dong, H. P., Li, W. Z., Li, N. & Wang, L. D. "Multifunctional MgO Layer in Perovskite Solar Cells." Chemphyschem 16, 1727-1732, (2015). https://doi.org/10.1002/cphc.201500163
- http://www.iec.ch/
-
Han, Yu, et al. "Degradation observations of encapsulated planar
$CH_3NH_3PbI_3$ perovskite solar cells at high temperatures and humidity." Journal of Materials Chemistry A 3.15 (2015):8139-8147. https://doi.org/10.1039/C5TA00358J - Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D'Haen, J., D'Olieslaeger, L., ... & Angelis, F. D. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15).
-
Deretzis, I., Alberti, A., Pellegrino, G., Smecca, E., Giannazzo, F., Sakai, N., ... & La Magna, A. (2015). Atomistic origins of
$CH_3NH_3PbI_3$ degradation to$PbI_2$ in vacuum. Applied Physics Letters, 106(13):131904. https://doi.org/10.1063/1.4916821 -
Zhang, Y. Y., Chen, S., Xu, P., Xiang, H., Gong, X. G., Walsh, A., & Wei, S. H. (2015). Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor
$CH_3NH_3PbI_3$ . arXiv preprint arXiv:1506.01301. -
Ganose, A. M., Savory, C. N., & Scanlon, D. O. (2015).
$(CH_3NH_3)_2Pb(SCN)_2I_2$ : A More Stable Structural Motif for Hybrid Halide Photovoltaics?. The journal of physical chemistry letters, 6(22):4594-4598. https://doi.org/10.1021/acs.jpclett.5b02177 - Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. https://doi.org/10.1021/nl501982b
- Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., ... & Snaith, H. J. (2015). Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. The journal of physical chemistry letters, 6(9):1666-1673. https://doi.org/10.1021/acs.jpclett.5b00545
- Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3):982-988. https://doi.org/10.1039/c3ee43822h
-
Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., ... & Gratzel, M. (2015). Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid
${\omega}$ -ammonium chlorides. Nature chemistry. - Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. https://doi.org/10.1021/nl501982b
- Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., ... & Getautis, V. (2015). Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS applied materials & interfaces, 7(21):11107-11116 https://doi.org/10.1021/am5090385
- Li, M. H., Hsu, C. W., Shen, P. S., Cheng, H. M., Chi, Y., Chen, P., & Guo, T. F. (2015). Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 51(85):15518-15521. https://doi.org/10.1039/C5CC04405G
- Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., ... & Meng, Q. (2014). Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters, 104(6):063901. https://doi.org/10.1063/1.4864638
-
Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic
$CH_3NH_3PbI_3/TiO_2$ heterojunction solar cells with carbon counter electrode. Scientific reports, 3. -
Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., ... & Ma, T. (2014). Hole-conductor-free, metal-electrode-free
$TiO_2/CH_3NH_3PbI_3$ heterojunction solar cells based on a lowtemperature carbon electrode. The journal of physical chemistry letters, 5(18):3241-3246. https://doi.org/10.1021/jz5017069 - Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., ... & Gratzel, M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194):295-298. https://doi.org/10.1126/science.1254763
- Li, X., Tschumi, M., Han, H., Babkair, S. S., Alzubaydi, R. A., Ansari, A. A., ... & Gratzel, M. (2015). Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technology, 3(6):551-555. https://doi.org/10.1002/ente.201500045
- Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumuller, T., ... & McGehee, M. D. (2014). Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7(11):3690-3698. https://doi.org/10.1039/C4EE02465F
- Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., ... & Zhang, W. (2014). Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9):1511-1515. https://doi.org/10.1021/jz500113x
- Brivio, F., Walker, A. B., & Walsh, A. (2013). Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Apl Materials, 1(4):042111. https://doi.org/10.1063/1.4824147
- Blank, H., & Amelinckx, S. (1963). Direct observation of ferroelectric domains in barium titanate by means of the electron microscope. Applied Physics Letters, 2(7):140-142. https://doi.org/10.1063/1.1753813
-
Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2015). Understanding the rate-dependent J-V hysteresis, slow time component, and aging in
$CH_3NH_3PbI_3$ perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3):995-1004. https://doi.org/10.1039/C4EE03664F - Zhang, Y., Liu, M., Eperon, G. E., Leijtens, T. C., McMeekin, D., Saliba, M., ... & Johnston, M. B. (2015). Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Materials Horizons, 2(3):315-322 https://doi.org/10.1039/C4MH00238E
- Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angewandte Chemie, 127(6):1811-1814. https://doi.org/10.1002/ange.201409740
- Azpiroz, J. M., Mosconi, E., Bisquert, J., & De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7):2118-2127. https://doi.org/10.1039/C5EE01265A
- Eames, C., Frost, J. M., Barnes, P. R., O'regan, B. C., Walsh, A., & Islam, M. S. (2015).
- Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2015). First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society, 137(32):10048-10051. https://doi.org/10.1021/jacs.5b03615
- Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., ... & Huang, J. (2015). Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 14(2):193-198. https://doi.org/10.1038/nmat4150
- Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., & Huang, J. (2015). Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 5(15).
- Leijtens, T., Hoke, E. T., Grancini, G., Slotcavage, D. J., Eperon, G. E., Ball, J. M., ... & McGehee, M. D. (2015). Mapping Electric Field-Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 5(20).