DOI QR코드

DOI QR Code

유 무기 페로브스카이트 태양전지의 열화와 안정성

Degradation and Stability of Organic-Inorganic Perovskite Solar Cells

  • 조경진 (고려대학교 신소재공학과) ;
  • 김성탁 (고려대학교 신소재공학과) ;
  • 배수현 (고려대학교 신소재공학과) ;
  • 정태원 (고려대학교 신소재공학과) ;
  • 이상원 (고려대학교 신소재공학과) ;
  • 이경동 (고려대학교 신소재공학과) ;
  • 이승훈 (고려대학교 신소재공학과) ;
  • 권구한 (소재기술원 에너지/환경소재팀, LG전자) ;
  • 안세원 (소재기술원 에너지/환경소재팀, LG전자) ;
  • 이헌민 (소재기술원 에너지/환경소재팀, LG전자) ;
  • 고민재 (고려대학교 그린스쿨대학원 에너지환경정책기술학과) ;
  • 강윤묵 (고려대학교 그린스쿨대학원 에너지환경정책기술학과) ;
  • 이해석 (고려대학교 신소재공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Cho, Kyungjin (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seongtak (Department of Materials Science and Engineering, Korea University) ;
  • Bae, Soohyun (Department of Materials Science and Engineering, Korea University) ;
  • Chung, Taewon (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Sang-won (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Kyung Dong (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Seunghun (Department of Materials Science and Engineering, Korea University) ;
  • Kwon, Guhan (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics) ;
  • Ahn, Seh-Won (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics) ;
  • Lee, Heon-Min (Energy & Environment Materials & Devices Team, Materials & Devices Advanced Research Institute, LG Electronics) ;
  • Ko, Min Jae (KU.KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Kang, Yoonmook (KU.KIST Green School, Graduate School of Energy and Environment, Korea University) ;
  • Lee, Hae-seok (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Donghwan (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2016.04.23
  • 심사 : 2016.05.20
  • 발행 : 2016.06.30

초록

The power conversion efficiency of perovskite solar cells has remarkably increased from 3.81% to 22.1% in the past 6 years. Perovskite solar cells, which are based on the perovskite crystal structure, are fabricated using organic-inorganic hybrid materials. The advantages of these solar cells are their low cost and simple fabrication procedure. Also, they have a band gap of about 1.6 eV and effectively absorb light in the visible region. For the commercialization of perovskite solar cells in the field of photovoltaics, the issue of their long term stability cannot be overlooked. Although the development of perovskite solar cells is unprecedented, their main drawback is the degradation of the perovskite structure by moisture. This degradation is accelerated by exposure to UV light, temperature, and external bias. This paper reviews the aforesaid reasons for perovskite solar cell degradation. We also discuss the research directions that can lead to the development of perovskite solar cells with high stability.

키워드

참고문헌

  1. Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7):506-514. https://doi.org/10.1038/nphoton.2014.134
  2. Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science, 267(5203):1473-1476. https://doi.org/10.1126/science.267.5203.1473
  3. Mitzi, D. B., Chondroudis, K., & Kagan, C. R. (2001). Organicinorganic electronics. IBM journal of research and development, 45(1):29-45. https://doi.org/10.1147/rd.451.0029
  4. NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed April 19, 2016).
  5. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17):6050-6051. https://doi.org/10.1021/ja809598r
  6. Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10):4088-4093. https://doi.org/10.1039/c1nr10867k
  7. Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Gratzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2.
  8. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 338(6107):643-647. https://doi.org/10.1126/science.1228604
  9. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., ... & Gratzel, M. (2013). Efficient inorganic- organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6):486-491. https://doi.org/10.1038/nphoton.2013.80
  10. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters, 13(4):1764-1769. https://doi.org/10.1021/nl400349b
  11. Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Gratzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature,
  12. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467):395-398. https://doi.org/10.1038/nature12509
  13. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature materials, 13(9):897-903. https://doi.org/10.1038/nmat4014
  14. Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535):476-480. https://doi.org/10.1038/nature14133
  15. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240):1234-1237. https://doi.org/10.1126/science.aaa9272
  16. Hwang, I., Jeong, I., Lee, J., Ko, M. J., & Yong, K. (2015). Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS applied materials & interfaces, 7(31):17330-17336. https://doi.org/10.1021/acsami.5b04490
  17. Chen, Q., De Marco, N., Yang, Y. M., Song, T. B., Chen, C. C., Zhao, H., ... & Yang, Y. (2015). Under the spotlight: The organic- inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 10(3):355-396. https://doi.org/10.1016/j.nantod.2015.04.009
  18. Frost, J. M., Butler, K. T., Brivio, F., Hendon, C. H., Van Schilfgaarde, M., & Walsh, A. (2014). Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters, 14(5):2584-2590. https://doi.org/10.1021/nl500390f
  19. Niu, G., Li, W., Meng, F., Wang, L., Dong, H., & Qiu, Y. (2014). Study on the stability of $CH_3NH_3PbI_3$ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2(3):705-710. https://doi.org/10.1039/C3TA13606J
  20. Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized $TiO_2$ with meso-superstructured organometal tri-halide perovskite solar cells. Nature communications, 4.
  21. Ito, S., Tanaka, S., Manabe, K., & Nishino, H. (2014). Effects of surface blocking layer of $Sb_2S_3$ on nanocrystalline $TiO_2$ for $CH_3NH_3PbI_3$ perovskite solar cells. The Journal of Physical Chemistry C, 118(30):16995-17000. https://doi.org/10.1021/jp500449z
  22. Guo, X. D., Dong, H. P., Li, W. Z., Li, N. & Wang, L. D. "Multifunctional MgO Layer in Perovskite Solar Cells." Chemphyschem 16, 1727-1732, (2015). https://doi.org/10.1002/cphc.201500163
  23. http://www.iec.ch/
  24. Han, Yu, et al. "Degradation observations of encapsulated planar $CH_3NH_3PbI_3$ perovskite solar cells at high temperatures and humidity." Journal of Materials Chemistry A 3.15 (2015):8139-8147. https://doi.org/10.1039/C5TA00358J
  25. Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D'Haen, J., D'Olieslaeger, L., ... & Angelis, F. D. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15).
  26. Deretzis, I., Alberti, A., Pellegrino, G., Smecca, E., Giannazzo, F., Sakai, N., ... & La Magna, A. (2015). Atomistic origins of $CH_3NH_3PbI_3$ degradation to $PbI_2$ in vacuum. Applied Physics Letters, 106(13):131904. https://doi.org/10.1063/1.4916821
  27. Zhang, Y. Y., Chen, S., Xu, P., Xiang, H., Gong, X. G., Walsh, A., & Wei, S. H. (2015). Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor $CH_3NH_3PbI_3$. arXiv preprint arXiv:1506.01301.
  28. Ganose, A. M., Savory, C. N., & Scanlon, D. O. (2015). $(CH_3NH_3)_2Pb(SCN)_2I_2$: A More Stable Structural Motif for Hybrid Halide Photovoltaics?. The journal of physical chemistry letters, 6(22):4594-4598. https://doi.org/10.1021/acs.jpclett.5b02177
  29. Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. https://doi.org/10.1021/nl501982b
  30. Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., ... & Snaith, H. J. (2015). Employing PEDOT as the p-Type Charge Collection Layer in Regular Organic-Inorganic Perovskite Solar Cells. The journal of physical chemistry letters, 6(9):1666-1673. https://doi.org/10.1021/acs.jpclett.5b00545
  31. Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3):982-988. https://doi.org/10.1039/c3ee43822h
  32. Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., ... & Gratzel, M. (2015). Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ${\omega}$-ammonium chlorides. Nature chemistry.
  33. Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10):5561-5568. https://doi.org/10.1021/nl501982b
  34. Malinauskas, T., Tomkute-Luksiene, D., Sens, R., Daskeviciene, M., Send, R., Wonneberger, H., ... & Getautis, V. (2015). Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS applied materials & interfaces, 7(21):11107-11116 https://doi.org/10.1021/am5090385
  35. Li, M. H., Hsu, C. W., Shen, P. S., Cheng, H. M., Chi, Y., Chen, P., & Guo, T. F. (2015). Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 51(85):15518-15521. https://doi.org/10.1039/C5CC04405G
  36. Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., ... & Meng, Q. (2014). Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters, 104(6):063901. https://doi.org/10.1063/1.4864638
  37. Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic $CH_3NH_3PbI_3/TiO_2$ heterojunction solar cells with carbon counter electrode. Scientific reports, 3.
  38. Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., ... & Ma, T. (2014). Hole-conductor-free, metal-electrode-free $TiO_2/CH_3NH_3PbI_3$ heterojunction solar cells based on a lowtemperature carbon electrode. The journal of physical chemistry letters, 5(18):3241-3246. https://doi.org/10.1021/jz5017069
  39. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., ... & Gratzel, M. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194):295-298. https://doi.org/10.1126/science.1254763
  40. Li, X., Tschumi, M., Han, H., Babkair, S. S., Alzubaydi, R. A., Ansari, A. A., ... & Gratzel, M. (2015). Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics. Energy Technology, 3(6):551-555. https://doi.org/10.1002/ente.201500045
  41. Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumuller, T., ... & McGehee, M. D. (2014). Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 7(11):3690-3698. https://doi.org/10.1039/C4EE02465F
  42. Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., ... & Zhang, W. (2014). Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9):1511-1515. https://doi.org/10.1021/jz500113x
  43. Brivio, F., Walker, A. B., & Walsh, A. (2013). Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. Apl Materials, 1(4):042111. https://doi.org/10.1063/1.4824147
  44. Blank, H., & Amelinckx, S. (1963). Direct observation of ferroelectric domains in barium titanate by means of the electron microscope. Applied Physics Letters, 2(7):140-142. https://doi.org/10.1063/1.1753813
  45. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Gratzel, M. (2015). Understanding the rate-dependent J-V hysteresis, slow time component, and aging in $CH_3NH_3PbI_3$ perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3):995-1004. https://doi.org/10.1039/C4EE03664F
  46. Zhang, Y., Liu, M., Eperon, G. E., Leijtens, T. C., McMeekin, D., Saliba, M., ... & Johnston, M. B. (2015). Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Materials Horizons, 2(3):315-322 https://doi.org/10.1039/C4MH00238E
  47. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. Angewandte Chemie, 127(6):1811-1814. https://doi.org/10.1002/ange.201409740
  48. Azpiroz, J. M., Mosconi, E., Bisquert, J., & De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7):2118-2127. https://doi.org/10.1039/C5EE01265A
  49. Eames, C., Frost, J. M., Barnes, P. R., O'regan, B. C., Walsh, A., & Islam, M. S. (2015).
  50. Haruyama, J., Sodeyama, K., Han, L., & Tateyama, Y. (2015). First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society, 137(32):10048-10051. https://doi.org/10.1021/jacs.5b03615
  51. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., ... & Huang, J. (2015). Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature materials, 14(2):193-198. https://doi.org/10.1038/nmat4150
  52. Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., & Huang, J. (2015). Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 5(15).
  53. Leijtens, T., Hoke, E. T., Grancini, G., Slotcavage, D. J., Eperon, G. E., Ball, J. M., ... & McGehee, M. D. (2015). Mapping Electric Field-Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 5(20).