DOI QR코드

DOI QR Code

A System Design and Implementation for Geotechnical Engineering Field Application of Drone

드론의 지반공학분야 활용을 위한 시스템 설계 및 구현

  • 김태식 (홍익대학교 토목공학과) ;
  • 정진만 (한남대학교 정보통신공학과) ;
  • 민홍 (호서대학교 컴퓨터정보공학부)
  • Received : 2016.03.08
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

Many studies have been carried out on monitoring the target by cooperating a drone with remote sensors recently. This monitoring system uses static sensors to measure environmental data and drones to collect measured data. In geotechnical engineering, inspectors go around measuring the safety of construction site and it is impractical to compose a network among numerous sensors in terms of the cost efficiency. In this paper, we propose a data collection system based on interaction between a drone and a few sensors that are installed around the target structure for geotechnical projects. Through experimental results, we also verify the availability and the time and cost efficiency of the proposed system comparing with using inspectors.

최근 드론과 원거리에 설치된 센서들의 협업을 통해 대상을 모니터링하는 연구가 활발하게 진행되고 있다. 이러한 모니터링 시스템에서는 고정된 센서를 통해 환경 데이터를 수집하고 이동이 가능한 드론을 통해 데이터를 수집한다. 지반 공학에서는 공사 현장의 안전성을 측정하기 위해서 인력을 사용하는 경우가 많으며 다수의 센서를 설치하여 네트워크를 구성하는 것은 비용문제 때문에 현실적인 대안이 될 수 없다. 본 논문에서는 이러한 지반관련 프로젝트 수행 시 소수의 센서를 구조물 주변에 설치하고 드론을 통해 데이터를 수집하는 시스템을 제안한다. 또한 실험을 통해서 제안 시스템의 가용성을 확인하고 인력을 활용할 때보다 시간과 비용을 줄일 수 있음을 검증하였다.

Keywords

References

  1. I. Moon, and Y. Kim, "Correlation Analysis between Soil Shear Strength Parameters and Cone Index Using Artificial Neural Networks-1," Journal of the Korea Academia-Industrial cooperation Society(JKAIS), Vol. 16, No. 3, pp. 2234-2241, 2015 (DOI: 10.5762/KAIS.2015.16.3.2234).
  2. K. Kim, "A Study of Sensor Network for Soil Moisture Measurement," The Journal of the Institute of Internet, Broadcasting and Communication, Vol. 12, No. 1, pp. 239-243, 2012 (DOI: 10.7236/JIWIT.2012.12.1.239).
  3. C. C. Douglas, and et al., "Dynamic Data-Driven Application Systems for Empty Houses, Contaminant Tracking, and Wildland Fireline Prediction," Grid-Based Problem Solving Environments, Vol. 239, No. 5, pp 255-272, 2007 (DOI: 10.1007/978-0-387-73659-4_14).
  4. C. Dang, and et al., "Vision Based Ground Object Tracking Using AR.Drone Quadrotor," in Proceedings of International Conference on Control, Automation and Information Sciences, pp. 146-151, 2013 (DOI: 10.1109/ICCAIS.2013.6720545).
  5. P. Ha, H. Yamamoto, K. Yamazaki, "Using Autonomous Air Vehicle in DTN Sensor Network for Environmental Observation," in Proceedings of IEEE Computer Software and Applications Conference, pp. 447-450, 2013 (DOI: 10.1109/COMPSAC.2013.74).
  6. M. L. Mauriello, J. E. Froehlich, "Towards Automated Thermal Profiling of Buildings at Scale Using Unmanned Aerial Vehicles and 3D-Reconstruction," in Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 119-122, 2014 (DOI: 10.1145/2638728.2638731).
  7. K. F. Flynn, and S. C. Chapra, "Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle," Remote Sensing, Vol. 6, No. 12, pp. 12815-12836, 2014 (DOI: 10.3390/rs61212815).
  8. L. Tang, and G. Shao, "Drone remote sensing for forestry research and practices," Journal of Forestry Research, Vol. 26, No. 4, pp. 791-797, 2015 (DOI: 10.1007/s11676-015-0088-y).