DOI QR코드

DOI QR Code

User Convenience-based Trading Algorithm System

사용자 편의성 기반의 알고리즘 트레이딩 시스템

  • Received : 2016.04.09
  • Accepted : 2016.06.10
  • Published : 2016.06.30

Abstract

In current algorithm trading system, general users need to program their algorithms using programing language and APIs provided from financial companies. Therefore, such environment keeps general personal investors away from using algorithm trading. Therefore, this paper focuses on developing user-friendly algorithm trading system which enables general investors to make their own trading algorithms without knowledge on program language and APIs. In the system, investors input their investment criteria through user interface and this automatically creates their own trading algorithms. The proposed system is composed with two parts: server intercommunicating with financial company server to send and to receive financial informations for trading, and client including user convenience-based user interface representing secondary indexes and strategies, and a part generating algorithm. The proposed system performance is proven through simulated-investment in which user sets up his investment strategy, algorithm is generated, and trading is performed based on the algorithm

기존의 알고리즘 트레이딩 시스템에서는 투자전략을 금융사가 제공하는 프로그램밍 언어와 API들을 사용하여 사용자가 직접 프로그래밍 하여야 했기에 일반 투자자들이 사용하기에는 많은 어려움이 있어왔다. 따라서 본 논문에서는 사용자가 프로그래밍에 대한 지식이 없어도 손쉽게 자신의 투자전략을 사용자 인터페이스를 통하여 제시하면 이를 통하여 알고리즘이 형성되어 시스템 트레이딩이 수행되도록 하는 사용자 친화적인 트레이딩 시스템을 개발하는 것을 목적으로 한다. 본 시스템은 금융회사의 서버와 주식 정보를 송수신하고 매매를 수행하는 서버 부분과 투자전략을 설정하기 위한 보조지표들로 이루어진 사용자 인터페이스, 이를 기반으로 알고리즘이 생성되는 부분 등으로 구성되어진 클라이언트로 구성되어진다. 제안된 시스템은 모의 투자 실행을 통하여 사용자가 설정한 투자전략에 따라 설정된 알고리즘에 의하여 자동으로 매매가 이루어짐을 통하여 성능을 검증하였다.

Keywords

References

  1. Korea Financial Investment Association, "2015 Financial Investment Fact Book," May 2015.
  2. Han-Jun Lee and In-Seok Kim, "A study on improving cyber liability insurance for electronic financial incident in easy payment system," The Journal of The Institute of Internet, Broadcasting and Communication, vol. 16, no. 2, pp. 1-8, Apr. 30 2016. https://doi.org/10.7236/JIIBC.2016.16.2.1
  3. Philip Treleaven, Galas Micha, and Lalchand Vidhi, "Algorithmic trading review." Communications of the ACM, vol. 56, no. 11, pp. 76-85, November 2013. https://doi.org/10.1145/2500117
  4. YesStock, https://www.yesstock.com/YesTrader/YesLanguage/YesLanguage_help.html
  5. ZeroAOS 2.0, http://www.smallake.kr/?page_id=6866.
  6. Quantopian, https://www.quantopian.com/.
  7. Market Analysis System, http://eiffel-mas.sourceforge.net/#header-bar.
  8. Bforex, http://www.bforex.com/.
  9. Suk Jun Lee and Kyong Joo Oh, "Finding the optimal frequency for trade and development of system trading strategies in futures market," Journal of the Korean Data & Information Science Society, vol. 22, no. 2, pp. 255-267, 2011.
  10. Seung Hwan Chung and Kyong Joo Oh, "Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market," Journal of the Korean Data & Information Science Society, vol. 25, no. 2, pp. 281-292, 2014. https://doi.org/10.7465/jkdi.2014.25.2.281
  11. Tuanhung Dao and Hyunchul Ahn, "An Optimized Combination of ${\pi}$-fuzzy Logic and Support Vector Machine for Stock Market Prediction," Journal of Intelligent Information System, vol. 20, no. 4, pp. 43-58, December 2014. https://doi.org/10.13088/jiis.2014.20.4.43
  12. Yong-Hwa Choi and Bok-Gyu Joo, "Development of a System Trading Technique Effective for Asset Value Stocks," Journal of Korean Institute Of Information Technology. vol. 12, no. 1, pp. 139-146, Jan. 31, 2014.
  13. Kim, Sun-Woong, and Hyun-Chul Ahn. "Development of an intelligent trading system using Support Vector Machines and genetic algorithms." Journal of Intelligence and Information Systems 16.1 (2010): 71-92.
  14. Yong-Cheol Hwang and Young-Sic Song, "The Effect of Securities e-Service Quality(e-SQ) and Relationship Quality on Customer Loyalty," Proc. in Conference of Korea Association of Business Education-Spring, pp. 103-118, 2012.