참고문헌
- Alonzo, E.S., and Sant' Angelo, D.B. (2011). Development of PLZF-expressing innate T cells. Curr. Opin. Immunol. 23, 220-227. https://doi.org/10.1016/j.coi.2010.12.016
- Annacker, O., Coombes, J.L., Malmstrom, V., Uhlig, H.H., Bourne, T., Johansson-Lindbom, B., Agace, W.W., Parker, C.M., and Powrie, F. (2005). Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051-1061. https://doi.org/10.1084/jem.20040662
-
Banz, A., Peixoto, A., Pontoux, C., Cordier, C., Rocha, B., and Papiernik, M. (2003). A unique subpopulation of
$CD4^+$ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis. Eur. J. Immunol. 33, 2419-2428. https://doi.org/10.1002/eji.200324205 -
Bayer, A.L., Yu, A.X., and Malek, T.R. (2007). Function of the IL-2R for thymic and peripheral
$CD4^+CD25^+$ $Foxp3^+$ T regulatory cells. J. Immunol. 178, 4062-4071. https://doi.org/10.4049/jimmunol.178.7.4062 -
Bird, L. (2010). Regulatory T cells nurtured by TGF
${\beta}$ . Nat. Rev. Immunol. 10, 466-466. -
Burchill, M.A., Yang, J.Y., Vogtenhuber, C., Blazar, B.R., and Farrar, M.A. (2007). IL-2 receptor
${\beta}$ -dependent STAT5 activation is required for the development of$Foxp3^+$ regulatory T cells. J. Immunol. 178, 280-290. https://doi.org/10.4049/jimmunol.178.1.280 -
Chang, L.Y., Lin, Y.C., Kang, C.W., Hsu, C.Y., Chu, Y.Y., Huang, C.T., Day, Y.J., Chen, T.C., Yeh, C.T., and Lin, C.Y. (2012). The indispensable role of CCR5 for in vivo suppressor function of tumor-derived
$CD103^+$ effector/memory regulatory T cells. J. Immunol. 189, 567-574. https://doi.org/10.4049/jimmunol.1200266 - Choi, E.Y., Park, W.S., Jung, K.C., Chung, D.H., Bae, Y.M., Kim, T.J., Song, H.G., Kim, S.H., Ham, D.I., and Hahn, J.H. et al. (1997). Thymocytes positively select thymocytes in human system. Hum. Immunol. 54, 15-20. https://doi.org/10.1016/S0198-8859(97)00012-8
- Choi, E.Y., Jung, K.C., Park, H.J., Chung, D.H., Song, J.S., Yang, S.D., Simpson, E., and Park, S.H. (2005). Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387-396. https://doi.org/10.1016/j.immuni.2005.09.005
- Collison, L.W., and Vignali, D.A. (2011). In vitro Treg suppression assays. Methods Mol. Biol. 707, 21-37. https://doi.org/10.1007/978-1-61737-979-6_2
-
Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A., Mitsdoerffer, M., Strom, T.B., Elyaman, W., and Ho, I.C., et al. (2008). IL-4 inhibits TGF-
${\beta}$ -induced$Foxp3^+$ T cells and, together with TGF-${\beta}$ , generates IL-$9^+$ IL-$10^+$ $Foxp3^-$ effector T cells. Nat. Immunol. 9, 1347-1355. https://doi.org/10.1038/ni.1677 -
El-Asady, R., Yuan, R., Liu, K., Wang, D., Gress, R.E., Lucas, P.J., Drachenberg, C.B., and Hadley, G.A. (2005). TGF-
${\beta}$ -dependent CD103 expression by$CD8^+$ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647-1657. https://doi.org/10.1084/jem.20041044 - Faustino, L., da Fonseca, D.M., Takenaka, M.C., Mirotti, L., Florsheim, E.B., Guereschi, M.G., Silva, J.S., Basso, A.S., and Russo, M. (2013). Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. J. Immunol. 190, 2614-2621. https://doi.org/10.4049/jimmunol.1202354
- Gottschalk, R.A., Corse, E., and Allison, J.P. (2010). TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J. Exp. Med. 207, 1701-1711. https://doi.org/10.1084/jem.20091999
-
Grueter, B., Petter, M., Egawa, T., Laule-Kilian, K., Aldrian, C.J., Wuerch, A., Ludwig, Y., Fukuyama, H., Wardemann, H., and Waldschuetz, R., et al. (2005) Runx3 regulates integrin
${\alpha}_E$ /CD103 and CD4 expression during development of$CD4^-$ /$CD8^+$ T cells. J. Immunol. 175, 1694-1705. https://doi.org/10.4049/jimmunol.175.3.1694 -
Hadley, G.A., Rostapshova, E.A., Gomolka, D.M., Taylor, B.M., Bartlett, S.T., Drachenberg, C.I., and Weir, M.R. (1999). Regulation of the epithelial cell-specific integrin, CD103, by human
$CD8^+$ cytolytic T lymphocytes. Transplantation. 67, 1418-1425. https://doi.org/10.1097/00007890-199906150-00005 -
Horwitz, D.A., Zheng, S.G., and Gray, J.D. (2008). Natural and TGF-
${\beta}$ -induced$Foxp3^+CD4^+$ $CD25^+$ regulatory T cells are not mirror images of each other. Trends Immunol. 29, 429-435. https://doi.org/10.1016/j.it.2008.06.005 -
Huehn, J., Siegmund, K., Lehmann, J.C., Siewert, C., Haubold, U., Feuerer, M., Debes, G.F., Lauber, J, Frey, O, and Przybylski, G.K. (2004). Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like
$CD4^+$ regulatory T cells. J. Exp. Med. 199, 303-313. https://doi.org/10.1084/jem.20031562 -
Kang, B.H., Min, H.S., Lee, Y.J., Choi, B., Kim, E.J., Lee, J., Kim, J.R., Cho, K.H., Kim, T.J., and Jung, K.C., et al. (2015a). Analyses of the TCR repertoire of MHC class II-restricted innate
$CD4^+$ T cells. Exp. Mol. Med. 47, e154. https://doi.org/10.1038/emm.2015.7 - Kang, B.H., Park, H.J., Yum, H.I., Park, S.P., Park, J.K., Kang, E.H., Lee, J.I., Lee, E.B., Park, C.G., and Jung, K.C., et al. (2015b). Thymic low affinity/avidity interaction selects natural Th1 cells. J. Immunol. 194, 5861-5871. https://doi.org/10.4049/jimmunol.1401628
-
Karecla, P.I., Bowden, S.J., Green, S.J., and Kilshaw, P.J. (1995). Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin
${\alpha}$ M290${\beta}$ 7 (${\alpha}E{\beta}7$ ). Eur. J. Immunol. 25, 852-856. https://doi.org/10.1002/eji.1830250333 -
Kilshaw, P.J., and Murant, S.J. (1991). Expression and regulation of
${\beta}$ -7 (${\beta}$ -P) integrins on mouse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591-2597. https://doi.org/10.1002/eji.1830211041 -
Lai, D., Zhu, J., Wang, T., Hu-Li, J., Terabe, M., Berzofsky, J.A., Clayberger, C., and Krensky, A.M. (2011). KLF13 sustains thymic memory-like
$CD8^+$ T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells. J. Exp. Med. 208, 1093-1103. https://doi.org/10.1084/jem.20101527 - Lee, Y.J., Jung, K.C., and Park, S.H. (2009). MHC class II-dependent T-T interactions create a diverse, functional and immunoregulatory reaction circle. Immunol. Cell. Biol. 87, 65-71. https://doi.org/10.1038/icb.2008.85
-
Lee, Y.J., Jeon, Y.K., Kang, B.H., Chung, D.H., Park, C.G., Shin, H.Y., Jung, K.C., and Park, S.H. (2010). Generation of
$PLZF^+$ $CD4^+$ T cells via MHC class II-dependent thymocyte-thymocyte interaction is a physiological process in humans. J. Exp. Med. 207, 237-246. https://doi.org/10.1084/jem.20091519 - Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C., and Hogquist, K.A. (2013). Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146-1154. https://doi.org/10.1038/ni.2731
-
Lehmann, J., Huehn, J., de la Rosa, M., Maszyna, F., Kretschmer, U., Krenn, V., Brunner, M., Scheffold, A., and Hamann, A. (2002). Expression of the integrin
${\alpha}E{\beta}7$ identifies unique subsets of$CD25^+$ as well as$CD25^-$ regulatory T cells. Proc. Natl. Acad. Sci. USA 99, 13031-13036. https://doi.org/10.1073/pnas.192162899 -
Li, M.O., and Flavell, R.A. (2008). TGF-
${\beta}$ : A master of all T cell trades. Cell 134, 392-404. https://doi.org/10.1016/j.cell.2008.07.025 - Li, W., Kim, M.G., Gourley, T.S., McCarthy, B.P., Sant'Angelo, D.B., and Chang, C.H. (2005). An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375-386. https://doi.org/10.1016/j.immuni.2005.09.002
-
Li, W., Sofi, M.H., Rietdijk, S., Wang, N., Terhorst, C., and Chang, C.H. (2007). The SLAM-Associated protein signaling pathway is required for development of
$CD4^+$ T cells selected by homotypic thymocyte interaction. Immunity 27, 763-774. https://doi.org/10.1016/j.immuni.2007.10.008 - Lio, C.W., and Hsieh, C.S. (2008). A two-step process for thymic regulatory T cell development. Immunity 28, 100-111. https://doi.org/10.1016/j.immuni.2007.11.021
-
Liu, Y., Zhang, P., Li, J., Kulkarni, A.B., Perruche, S., and Chen, W. (2008). A critical function for TGF-
${\beta}$ signaling in the development of natural$CD4^+CD25^+Foxp3^+$ regulatory T cells. Nat. Immunol. 9, 632-640. https://doi.org/10.1038/ni.1607 -
Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica, P., Mueller, S.N., and Stefanovic, T., et al. (2013). The developmental pathway for
$CD103^+CD8^+$ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-1301. https://doi.org/10.1038/ni.2744 -
Maerten, P., Shen, C., Bullens, D.M., Van Assche, G., Van Gool, S., Geboes, K., Rutgeerts, P., and Ceuppens, J.L. (2005). Effects of interleukin 4 on
$CD25^+$ $CD4^+$ regulatory T cell function. J. Auto-immun. 25, 112-120. -
McHugh, R.S., Whitters, M.J., Piccirillo, C.A., Young, D.A., Shevach, E.M., Collins, M., and Byrne, M.C. (2002).
$CD4^+CD25^+$ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311-323. https://doi.org/10.1016/S1074-7613(02)00280-7 -
Min, H.S., Lee, Y.J., Jeon, Y.K., Kim, E.J., Kang, B.H., Jung, K.C., Chang, C.H., and Park, S.H. (2011). MHC Class II-restricted interaction between thymocytes plays an essential role in the production of innate
$CD8^+$ T Cells. J. Immunol. 186, 5749-5757. https://doi.org/10.4049/jimmunol.1002825 -
Ouyang, W., Beckett, O., Ma, Q., and Li, M.O. (2010). Transforming growth factor-
${\beta}$ signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642-653. https://doi.org/10.1016/j.immuni.2010.04.012 - Park, S.H., Bae, Y.M., Kim, T.J., Ha, I.S., Kim, S., Chi, J.G., and Lee, S.K. (1992). HLA-DR expression in human fetal thymocytes. Hum. Immunol. 33, 294-298. https://doi.org/10.1016/0198-8859(92)90338-N
- Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., and Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257-264. https://doi.org/10.1038/ni.1840
- Prince, A.L., Kraus, Z., Carty, S.A., Ng, C., Yin, C.C., Jordan, M.S., Schwartzberg, P.L., and Berg, L.J. (2014a). Alonzo, E.S., and Sant'Angelo, D.B. (2011). Development of PLZF-expressing innateT cells. Curr. Opin. Immunol. 23, 220-227.
-
Prince, A.L., Watkin, L.B., Yin, C.C., Selin, L.K., Kang, J., Schwartzberg, P.L., and Berg, L.J. (2014b). Innate
$PLZF^+CD4^+$ ${\alpha}{\beta}$ T cells develop and expand in the absence of Itk. J. Immunol. 193, 673-687. https://doi.org/10.4049/jimmunol.1302058 -
Rao, P.E., Petrone, A.L., and Ponath, P.D. (2005). Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-
${\beta}$ . J. Immunol. 174, 1446-1455. https://doi.org/10.4049/jimmunol.174.3.1446 -
Robertson, H., Wong, W.K., Talbot, D., Burt, A.D., and Kirby, J.A. (2001). Tubulitis after renal transplantation: demonstration of an association between
$CD103^+$ T cells, transforming growth factor${\beta}$ 1 expression and rejection grade. Transplantation 71, 306-313. https://doi.org/10.1097/00007890-200101270-00024 -
Saito, K., Torii, M., Ma, N., Tsuchiya, T., Wang, L., Hori, T., Nagakubo, D., Nitta, N., Kanegasaki, S., and Hieshima, K. (2008). Differential regulatory function of resting and preactivated allergen-specific
$CD4^+$ $CD25^+$ regulatory T cells in Th2-type airway inflammation. J. Immunol. 181, 6889-6897. https://doi.org/10.4049/jimmunol.181.10.6889 -
Siewert, C., Lauer, U., Cording, S., Bopp, T., Schmitt, E., Hamann, A., and Huehn, J. (2008). Experience-driven development: effector/memory-like
${{\alpha}_E}^+Foxp3^+$ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol. 180, 146-155. https://doi.org/10.4049/jimmunol.180.1.146 -
Skapenko, A., Kalden, J.R., Lipsky, P.E., and Schulze-Koops, H. (2005). The IL-4 receptor
${\alpha}$ -chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing$CD25^+CD4^+$ regulatory T cells from$CD25^-CD4^+$ precursors. J. Immunol. 775, 6107-6116. -
Stephens, G.L., Andersson, J., and Shevach, E.M. (2007). Distinct subsets of
$Foxp3^+$ regulatory T cells participate in the control of immune responses. J. Immunol. 178, 6901-6911. https://doi.org/10.4049/jimmunol.178.11.6901 - Treiner, E., and Lantz, O. (2006). CD1d- and MR1-restricted invariant T cells: of mice and men. Curr. Opin. Immunol. 18, 519-526. https://doi.org/10.1016/j.coi.2006.07.001
- Vignali, D.A.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532. https://doi.org/10.1038/nri2343
-
Wang, D., Yuan, R., Feng, Y., El-Asady, R., Farber, D.L., Gress, R.E., Lucas, P.J., and Hadley, G.A. (2004). Regulation of CD103 expression by
$CD8^+$ T cells responding to renal allografts. J. Immunol. 172, 214-221. https://doi.org/10.4049/jimmunol.172.1.214 -
Wei, J., Duramad, O., Perng, O.A., Reiner, S.L., Liu, Y.J., and Qin, F.X. (2007). Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of
$Foxp3^+$ regulatory T cells. Proc. Nat'l. Acad. Sci. USA 104, 18169-18174. https://doi.org/10.1073/pnas.0703642104 -
Weinreich, M.A., Odumade, O.A., Jameson, S.C., and Hogquist, K.A. (2010). T cells expressing the transcription factor PLZF regulate the development of memory-like
$CD8^+$ T cells. Nat. Immunol. 11, 709-716. https://doi.org/10.1038/ni.1898 -
Zhao, D., Zhang, C., Yi, T., Lin, C.L., Todorov, I., Kandeel, F., Forman, S., and Zeng, D. (2008). In vivo-activated
$CD103^+CD4^+$ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood 112, 2129-2138. https://doi.org/10.1182/blood-2008-02-140277
피인용 문헌
- Invariant Natural Killer T Cell Subsets—More Than Just Developmental Intermediates vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01393
- Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla vol.116, pp.44, 2019, https://doi.org/10.1073/pnas.1910412116
- Calcium signals regulate the functional differentiation of thymic iNKT cells vol.40, pp.16, 2016, https://doi.org/10.15252/embj.2021107901