참고문헌
- Andersen, T. G. and Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns, The Journal of Finance, 52, 975-1005. https://doi.org/10.1111/j.1540-6261.1997.tb02722.x
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distribution of realized stock return volatility, Journal of Financial Economics, 61, 43-76. https://doi.org/10.1016/S0304-405X(01)00055-1
- Andersen, T. G., Bollerslev, T., and Meddahi, N. (2005). Correcting the errors: volatility forecast evaluation using high-frequency data and realized volatilities, Econometrica, 73, 279-296. https://doi.org/10.1111/j.1468-0262.2005.00572.x
- Andersen, T. G., Bollerslev, T., and Meddahi, N. (2011). Realized volatility forecasting and market microstructure noise, Journal of Econometrics, 160, 220-234. https://doi.org/10.1016/j.jeconom.2010.03.032
- Asai, M., McAleer, M., and Medeiros, M. C. (2012). Asymmetry and long memory in volatility modeling, Journal of Financial Econometrics, 10, 495-512. https://doi.org/10.1093/jjfinec/nbr015
- Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics, Journal of Econometrics, 73, 5-59. https://doi.org/10.1016/0304-4076(95)01732-1
- Banerjee, A. and Urga, G. (2005). Modelling structural breaks, long memory and stock market volatility: an overview, Journal of Econometrics, 129, 1-34. https://doi.org/10.1016/j.jeconom.2004.09.001
- Bekaert, G. and Wu, G. (2000). Asymmetric volatility and risk in equity markets, The Review of Financial Studies, 13, 1-42. https://doi.org/10.1093/rfs/13.1.1
- Bisaglia, L. and Procidano, I. (2002). On the power of the augmented Dickey-Fuller test against fractional alternatives using bootstrap, Economics Letters, 77, 343-347. https://doi.org/10.1016/S0165-1765(02)00146-5
- Campbell, J. Y. and Hentschel, L. (1992). No news is good news: an asymmetric model of changing volatility in stock returns, Journal of Financial Economics, 31, 281-318. https://doi.org/10.1016/0304-405X(92)90037-X
- Chiriac, R. and Voev, V. (2011). Modelling and forecasting multivariate realized volatility, Journal of Applied Econometrics, 26, 922-947. https://doi.org/10.1002/jae.1152
- Cho, S. and Shin, D. W. (2016). An integrated heteroscedastic autoregressive model for forecasting realized volatilities, Journal of the Korean Statistical Society, 45, 371-380. https://doi.org/10.1016/j.jkss.2015.12.004
- Christie, A. A. (1982). The stochastic behavior of common stock variances: value, leverage and interest rate effects, Journal of Financial Economics, 10, 407-432. https://doi.org/10.1016/0304-405X(82)90018-6
- Corsi, F. (2004). A simple long memory model of realized volatility, Available from: http://dx.doi.org/10.2139/ssrn.626064
- Corsi, F. (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196.
- Corsi, F., Audrino, F., and Reno, R. (2012). HAR modeling for realized volatility forecasting, Handbook of Volatility Models and Their Applications (pp. 363-382), John Wiley & Sons, New Jersey.
- Corsi, F. and Reno, R. (2009). HAR volatility modelling with heterogeneous leverage and jumps, Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.5804&rep=rep1&type=pdf
- Corsi, F., Zumbach, G., Muller, U. A., and Dacorogna, M. M. (2001). Consistent high-precision volatility from high frequency data, Economic Notes, 30, 183-204. https://doi.org/10.1111/j.0391-5026.2001.00053.x
- Dacorogna, M. M., Muller, U. A., Nagler, R. J., Olsen, R. B., and Pictet, O. V.(1993). A geographical model for the daily and weekly seasonal volatility in the foreign exchange market, Journal of International Money and Finance, 12, 413-438. https://doi.org/10.1016/0261-5606(93)90004-U
- Deo, R., Hurvich, C., and Lu, Y. (2006). Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment, Journal of Econometrics, 131, 29-58. https://doi.org/10.1016/j.jeconom.2005.01.003
- Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root, Journal of the American Statistical Association, 74, 427-431.
- Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy, Journal of Business & Economic Statistics, 13, 134-144.
- Ding, Z. and Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach, Journal of Econometrics, 73, 185-215. https://doi.org/10.1016/0304-4076(95)01737-2
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
- Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility, The Journal of Finance, 48, 1749-1778. https://doi.org/10.1111/j.1540-6261.1993.tb05127.x
- Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
- Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
- Goncalves, S. and Meddahi, N. (2009). Bootstrapping realized volatility, Econometrica, 77, 283-306. https://doi.org/10.3982/ECTA5971
- Granger, C. W. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing, Journal of Time Series Analysis, 1, 15-29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
- Huang, X. and Tauchen, G. (2005). The relative contribution of jumps to total price variance, Journal of Financial Econometrics, 3, 456-499. https://doi.org/10.1093/jjfinec/nbi025
- Hurvich, C. M., Deo, R., and Brodsky, J. (1998). The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series, Journal of Time Series Analysis, 19, 19-46. https://doi.org/10.1111/1467-9892.00075
- Hwang, E. and Shin, D. W. (2014). Infinite-order, long-memory heterogeneous autoregressive models, Computational Statistics & Data Analysis, 76, 339-358. https://doi.org/10.1016/j.csda.2013.08.009
- Kwiatkowski, D., Phillips, P. C., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?, Journal of Econometrics, 54, 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
- Martens, M., Van Dijk, D., and De Pooter, M. (2009). Forecasting S&P 500 volatility: long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements, International Journal of Forecasting, 25, 282-303. https://doi.org/10.1016/j.ijforecast.2009.01.010
- McAleer, M. and Medeiros, M. C. (2008). A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries, Journal of Econometrics, 147, 104-119. https://doi.org/10.1016/j.jeconom.2008.09.032
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach, , Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
- Park, S. and Shin, D. W. (2014). Modeling and forecasting realized volatilities of Korean financial assets featuring long memory and asymmetry, Asia-Pacific Journal of Financial Studies, 43, 31-58. https://doi.org/10.1111/ajfs.12039
- Patton, A. J. and Sheppard, K. (2015). Good volatility, bad volatility: signed jumps and the persistence of volatility, Review of Economics and Statistics, 97, 683-697. https://doi.org/10.1162/REST_a_00503
- Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence, The Annals of Statistics, 23, 1048-1072. https://doi.org/10.1214/aos/1176324636
- Shephard, N. and Sheppard, K. (2010). Realising the future: forecasting with high-frequency-based volatility (HEAVY) models, Journal of Applied Econometrics, 25, 197-231. https://doi.org/10.1002/jae.1158
- Song, H. and Shin, D. W. (2015). Long-memories and mean breaks in realized volatilities, Applied Economics Letters, 22, 1273-1280. https://doi.org/10.1080/13504851.2015.1013605
- Soucek, M. and Todorova, N. (2014). Realized volatility transmission: the role of jumps and leverage effects, Economics Letters, 122, 111-115. https://doi.org/10.1016/j.econlet.2013.11.007
- Todorov, V., Tauchen, G., and Grynkiv, I. (2011). Realized Laplace transforms for estimation of jump diffusive volatility models, Journal of Econometrics, 164, 367-381. https://doi.org/10.1016/j.jeconom.2011.06.016
- Yun, S. and Shin, D. W. (2015). Forecasting the realized variance of the log-return of Korean won US dollar exchange rate addressing jumps both in stock-trading time and in overnight, Journal of the Korean Statistical Society, 44, 390-402. https://doi.org/10.1016/j.jkss.2014.11.001