DOI QR코드

DOI QR Code

An outlier weight adjustment using generalized ratio-cum-product method for two phase sampling

이중추출법에서 일반화 ratio-cum-product 방법을 이용한 이상점 가중치 보정법

  • Oh, Jung-Taek (Department of Statistics, Hankuk University of Foreign Studies) ;
  • Shin, Key-Il (Department of Statistics, Hankuk University of Foreign Studies)
  • 오정택 (한국외국어대학교 통계학과) ;
  • 신기일 (한국외국어대학교 통계학과)
  • Received : 2016.06.22
  • Accepted : 2016.09.11
  • Published : 2016.12.31

Abstract

Two phase sampling (double sampling) is often used when there is inadequate population information for proper stratification. Many recent papers have been devoted to the estimation method to improve the precision of the estimator using first phase information. In this study we suggested outlier weight adjustment methods to improve estimation precision based on the weight of the generalized ratio-cum-product estimator. Small simulation studies are conducted to compare the suggested methods and the usual method. Real data analysis is also performed.

이중추출법은 모집단 정보가 충분하지 않아 층화 추출법을 사용할 때 정확한 층화 정보가 없는 경우에 흔히 사용하는 표본추출법이다. 특히 최근에는 이중추출법을 위해 1차 조사에서 얻어진 보조 정보를 이용하여 추정의 정확성을 향상시키는 방법들이 제안되었다. 본 연구에서는 최근 제안된 일반화 ratio-cum-product 추정량에서 사용하는 가중치를 이상점 처리를 위한 가중치 보정에 맞도록 보정하여 추정의 정밀성을 향상시키는 방법을 제안하였다. 모의실험을 통하여 본 연구에서 제안한 방법과 기존의 이상점 가중치 보정법의 성능을 비교하였으며 사례 분석을 통하여 제안된 방법의 우수성을 확인하였다.

Keywords

References

  1. Chamber, R. L. and Ren, R. (2004). Outlier robust imputation of survey data, ASA Section on Survey Research Methods.
  2. Cochran, W. G. (1977). Sampling Techniques (3rd ed.), John Wiley & Sons, New York.
  3. Fuller, W. A. (2000). Two-phase sampling, SSC Annual meeting. In Proceedings of the Survey Methods Section, 23-30, Ottawa, Canada.
  4. Hidiroglou, M. A. (2001). Double sampling, Survey Methodology, 27, 143-154.
  5. Hidiroglou, M. A. and Sandal, C. E. (1998). Use of auxiliary information for two-phase sampling, Survey Methodology, Amstat proceeding.
  6. Kim, J.-Y. and Shin, K.-I. (2013). Multiple imputation reducing outlier effect using weight adjustment methods. https://doi.org/10.5351/KJAS.2013.26.4.635
  7. Kim, M.-K. and Shin, K.-I. (2014). A multiple imputation for reducing outlier effect, The Korean Journal of Applied statistics, 27, 1229-1241. https://doi.org/10.5351/KJAS.2014.27.7.1229
  8. Koyuncu, N., and Kadilar, C. (2009). Family of estimators of population mean using two auxiliary variable in stratified random sampling, Communications in Statistics-Theory and Methods, 38, 2938-2417.
  9. Lee, H., Rancourt, E., and Sarndal, C.-E. (1995). Experiment with variance estimation from survey data with imputed value, Journal of Official Statistics, 10, 231-243.
  10. She, Y. and Owen, A. B. (2011). Outlier detection using nonconvex penalized regression, Journal of the American Statistical Association, 106, 626-639. https://doi.org/10.1198/jasa.2011.tm10390
  11. Singh, H. P. and Kumar, S. (2010). Estimation of mean in presence of non-response using two phase sampling scheme, Statistical Papers, 51, 559-582. https://doi.org/10.1007/s00362-008-0140-5
  12. Singh, H. P., Kumar, S., and Kozak, M. (2010). Improved estimation of finite-population mean using subsampling to deal with non response in two-phase sampling scheme, Communications in Statistics-Theory and Methods, 39, 791-802. https://doi.org/10.1080/03610920902796056
  13. Tailor, R., Chouhan, S., and Kim, J.-M. (2014). Ratio and product type exponential estimators of population mean in double sampling for stratification, Communications for Statistical Application and Methods, 21, 1-9. https://doi.org/10.5351/CSAM.2014.21.1.001
  14. Tailor, R., Lone, H. A., and Pandey, R. (2015). Generalized ratio-cum-product type estimator of finite population mean in double sampling for stratification, Communications for Statistical Application and Methods, 22, 255-264. https://doi.org/10.5351/CSAM.2015.22.3.255
  15. Wu, C. and Luan, Y. (2003). Optimal calibration estimator under two-phase sampling, Journal of Official Statistics, 19, 119-131.
  16. Wu, C. and Sitter, R. R. (2001). A Model-calibration approach to using complete auxiliary information from survey data, Journal of the American Statistical Association, 96, 185-193. https://doi.org/10.1198/016214501750333054