Abstract
Entani and Tanaka (2007) presented a new approach for obtaining interval evaluations suitable for handling uncertain data. Above all, their approach is characterized by the normalization of interval data and thus the elimination of redundant bounds. Further, interval global weights in AHP are derived by using such normalized interval data. In this paper, we present a heuristic method for finding extreme points of interval data, which basically extends the method by Entani and Tanaka (2007), and also helps to obtain normalized interval data. In the second part of this paper, we show that the solutions to the linear program for interval global weights can be obtained by a simple inspection. In the meantime, the absolute dominance proposed by the authors is extended to pairwise dominance which makes it possible to identify at least more dominated alternatives under the same information.
Entani and Tanaka(2007)는 불확실한 데이터를 처리하기에 적합한 구간 평가결과를 얻는 새로운 방법을 제시하였다. 무엇보다 그들의 방법은 구간 데이터를 정규화하여 redundant 데이터를 제거하는데 특징이 있다. 더 나가 정규화된 구간데이터를 활용하여 계층분석과정(AHP)에서 최종 구간 우선순위벡터를 도출한다. 이 논문에서는 구간 데이터의 정규화 목적을 달성하기 위해 구간 데이터의 꼭지점을 구하는 쉽고 간편한 휴리스틱 방법을 제시한다. 한편 간단한 검사법을 활용하여 정규화된 데이터를 활용하여 최종 구간 우선순위벡터를 도출하는 방법을 제시하고자 한다. 아울러 Entani and Tanaka(2007)가 제시한 대안간 지배관계 규명 방법을 확장한 지배관계 규명 방법을 제시하고자 한다.