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Entani and Tanaka (2007) presented a new approach for obtaining interval evaluations suitable for handling 
uncertain data. Above all, their approach is characterized by the normalization of interval data and thus the 
elimination of redundant bounds. Further, interval global weights in AHP are derived by using such normalized 
interval data. In this paper, we present a heuristic method for finding extreme points of interval data, which 
basically extends the method by Entani and Tanaka (2007), and also helps to obtain normalized interval data. In the 
second part of this paper, we show that the solutions to the linear program for interval global weights can be 
obtained by a simple inspection. In the meantime, the absolute dominance proposed by the authors is extended to 
pairwise dominance which makes it possible to identify at least more dominated alternatives under the same 
information.
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1. Introduction

In decision-making under incomplete 

information, we often encounter interval expression 

about decision parameter(s) intended to alleviate 

the burdens of precisely specifying them due to 

reasons of time pressure, lack of data and domain 

knowledge, limited attention and information 

processing capabilities and so on. The interval 

weights in multi-criteria decision-making (MCDM) 

problems may be sometimes inconsistent in the 

sense that there are no feasible weights available, 

or redundant in the sense that a range of interval 

weights can be tightened with no loss of 

information. The inconsistency of interval weights 

is easily checked by computing the sum of lower 

and upper bounds. Thus, if the sum of lower 

bounds exceeds one or if the sum of upper bounds 

is less than one, the interval weights turn out to be 

inconsistent because there are no feasible weights. 

The redundancy that has to be removed, however, 

is somewhat difficult to identify. With regard to 

this, we find that Campos, Huete, and Moral 

(1994) presented a number of basic operations 
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necessary to develop a calculus with probability 

intervals as an interesting tool to represent 

uncertain information. In the meantime, they 

proposed a recursive algorithm to develop the 

extreme probabilities by using an implicit tree 

search where each node is a partial probabilities 

and a child node represents a refinement of its 

parent node by increasing one component of 

probabilities. Wang and Elhag (2006) introduced 

normalization methods for interval weights which 

are classified into independent and dependent 

subject to the requirement of sum to unity 

constraint. They further extended their methods to 

fuzzy weights by using -cuts and the extension 

principle. Some errors in their development were 

pointed out and corrected by Li, Wang, and Li 

(2009). Pavlačka (2014) studied the problem of 

normalization of a fuzzy vector of weights that 

expresses the joint probability distribution of initial 

weights.

Entani and Tanaka (2007) introduced a new 

efficient normalization method for interval weights 

while we find numerous normalization methods for 

crisp data. See more on this in Sugihara et al., 

(2004) and Tanaka et al., (2004). 

This paper aims not to criticize their approach 

but to suggest a heuristic method to normalize 

interval data via extreme points, which also helps 

to achieve the normalization of interval data and 

thus the elimination of redundant bounds. To do 

so, we present two methods which are distinct 

from previous methods. In the first, we formulate 

a linear program (LP) for normalizing interval 

weights based on Entani and Tanaka (2007). The 

optimal solution to the LP program simply reveals 

the normalized interval weights. Another approach 

is to find their extreme points by inspecting the 

end points (i.e., lower and upper bounds) of 

interval weights, based on the fact that, given  

interval weights, every extreme point is composed 

of at least  end points.

Further, in the final stage of obtaining interval 

global weights in the framework of the analytic 

hierarchy process (AHP), we solve LPs by a 

simple inspection since they belong to a simple 

knapsack problem. The individual approach 

proposed by the authors is also extended to 

pairwise dominance which makes it possible to 

identify at least more dominated alternatives under 

the given information.

This paper is organized as follows. In Section 2, 

we present an LP to normalize interval weights on 

the basis of Entani and Tanaka (2007) and a 

heuristic method to find their extreme points. In 

Section 3, along with the absolute dominance, 

pairwise dominance applies when referenced 

priority weights and local weights are specified by 

interval weights. Concluding remarks follow in 

Section 4. 

2. Normalizing interval weights and 
finding their extreme points 

Entani and Tanaka (2007) presented an efficient 

normalization method to eliminate any redundancy 
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in interval weights with no loss of information. 

Definition 1. An interval weight vector 

 is said to be normalized if and 

only if

,  

,  

where , .

The inequalities in Definition 1 can be 

equivalently rewritten as follows:

, 

, . 

Given the interval weight vector , a normalized 

interval weight vector  can be 

obtained by solving the following LP problem 

(P1):

(P1): An LP for normalizing interval weights 

Maximize 

s.t. 

,  

,  

, , 

,  

Suppose that a set of interval weights  is 

specified as

.

The first condition for the feasibility of these 

weights is to satisfy  and 

 and the weights-set  passes the 

feasibility test by yielding  

and . Subsequently, we 

formulate an LP problem to obtain a tightened 

weights-set ,  as 

follows:

Maximize 

s.t. 

, , , 

, , , 

, , ,  

, , , 

, , , 

The optimal solution to the problem is to cut 

down the upper bounds of ,  from 

0.4 to 0.3, from 0.3 to 0.2, and from 0.7 to 0.5 

respectively, as can be seen in  below:

. 

Therefore, we can use  instead of  

equivalently when solving any decision-making 

problems constrained by .

Normalizing interval weights by eliminating 

redundant (upper or lower) bounds implies that 

such removed bounds never appear in the set of 

extreme points of interval weights. In other words, 

we can obtain normalized interval weights by 

finding extreme points of interval weights and then 
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selecting their coordinate-wise maximum and 

minimum values. Moreover, finding the extreme 

points of interval weights is not only helpful in 

removing, if any, their redundant bounds but also 

in solving decision-making problems with interval 

weights as shown in Section 3. 

Now, we present how to find the extreme points 

of interval weights (see also Arbel (1989) for the 

case of ratio bounds) via LP (P2) below, which 

has any permutation in the objective function 

coefficients (Ahn and Park, 2014): 

(P2): Enumeration method 

Maximize 

s.t. 

where  is the  element of a permutation of 

.

Then, the optimal solution to (P2) corresponding 

to one extreme point is obtained by allotting  to 

all  and successively allotting the residual 

weight  to  having the largest

 to its fullest extent, then to the second 

largest , … until the residual weight is 

completely used. In this manner, we can find all 

the extreme points by permuting objective function 

coefficients. In the worst-case, one has to consider 

 different programs even though many extreme 

points are surely duplicated. In general, however, 

one only has to consider a smaller number of 

programs unless the sum of lower bounds is too 

small to consider many different permutations. 

Later, we present how to find all extreme point via 

a heuristic approach instead of the enumeration 

method.

Let us find the extreme points of :

 

 

Considering the LP problem 

,

we first allot the lower bounds of the interval 

weights to each , yielding 

 with the residual weight 

0.2. Then, we allot 0.2 to  because it has the 

largest coefficient and can also accommodate it. 

The resulting extreme point is rendered to be 

. Since the residual weight is 

completely allotted in , there is no need to 

consider other permutations starting from 4, which 

saves us  problems to solve. When the 

coefficient 4 is placed in the second or the third 

position in the objective function, all the residual 

weight 0.2 can be allotted to  or , thus 

yielding the extreme points  

and  respectively. Finally, we 

can allot only 0.1 to  to its fullest with the 

coefficient 4 in the fourth and accordingly, the 

residual weight 0.1 should be allotted to  

having the next largest coefficient 3, which yields 

three extreme points as follows: 
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.

In summary, we list all the extreme points in a 

matrix :

  (1)

Every extreme point in  shares some common 

feature in that it is composed of either  

(i.e., the first three columns) or  end points of 

 (i.e., the remaining three columns), which is 

restated in Theorem 1. 

Theorem 1. If interval weights , 

  are consistent, their extreme 

points are determined by selecting at least  

end points (lower or upper bounds) of the interval 

weights.

Proof. If interval weight vector is consistent, it 

holds that  and . If 

, then , , thus 

yielding only one extreme point. If , 

we successively assign remaining weight 

depending on the magnitude of any permutated 

coefficients if available according to (P2), starting 

with the lower bounds. If the remaining weight is 

completely used at the largest coefficient, then the 

allocation ends and the extreme points is 

constructed by using  end points. If there is still 

remaining weight since the upper bound 

corresponding to the coefficient is less than the 

remaining weight, it will be allocated next largest 

coefficient, which yields extreme point composed 

of  end points if the upper bound of second 

largest coefficient is equal to the remaining weight 

and  otherwise. In this manner, we can 

conclude any extreme points are constructed by 

using at least  end points, noting that the 

specific permutation is not assumed (Ahn and 

Park, 2014).

Corollary 1. All extreme points of interval weights 

can be identified with a finite number of 

inspections of end points, namely  in 

the case of using  end points plus 

 in the case of using 

 end points.

Proof. The consistent and normalized interval 

weights are transformed to ones with zero lower 

bounds by making the change of variables 

, , thus resulting in 

, ,  

. The number of inspections for 

 end points counts (1) all the upper bounds, (2) 

any one lower bound (i.e., zero) and all the other 

upper bounds, (3) any two lower bounds and all 

the other upper bounds and so on, which sums to 

 The number of inspections for 

 end points counts (1) any one of  zero 
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bounds with any  upper bounds among 

 upper bounds plus one interior weight, 

(2) any two of  zero bounds with any  

upper bounds among  upper bounds plus 

one interior weight, and so on, which sums to 

. Combining these results 

proves the assertion of Corollary 1.

Consider a set of interval weights  again, 

which was already shown in the enumeration 

method:

 

First, we convert  to  of which the lower 

bounds are all set to zero by letting 

, :

 

 

At this point, we can find all extreme points 

based on Theorem 1 and Corollary 1. But, for 

computational ease, we further make the change of 

variables to convert s to integer-valued ones, 

say , :

.

It is noteworthy that only integer-valued  is 

allowed to be an element of extreme point. 

Therefore, for example, a vector  

cannot be chosen an extreme point of  since 

it violates Theorem 1. According to Corollary 1, 

we can find two sets of extreme points,  and  

comprised of four and three end points 

respectively,

.

A sequence of operations to go back to , 

specifically, dividing each element of extreme 

point by 10 and then adding lower bounds will 

result in the extreme points as shown in (1).

Consider another interval weights given as 

, , and 

 with . If 

we perform a sequence of operations such that we 

subtract each lower bound from  and then 

multiply the resulting weights by 100,

it follows that , , 

and  with . 

Then, reverse operations reveal the extreme points 

in terms of  and  respectively: 

 

in terms of  and 

 

in terms of . The normalized interval weights 

are thus shown by , 

, and . 

The component-wise minimum and maximum of 

extreme points give the normalized interval 
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weights, specifically, , 

 where  is the ith component of 

the jth extreme point. In the matrix  in (1), we 

find that a set of original interval weights is 

already normalized.

3. Identifying non-dominated 
alternatives

In the framework of the AHP, a decision-maker 

provides pairwise preference judgments between 

alternatives ,  with respect to each 

criterion and also pairwise preference judgments 

between criteria , . According to 

Entani and Tanaka (2007), the local weight of 

alternative  under criterion  is denoted as 

, , and the referenced priority 

weight of criterion  is denoted as 

,  with a single layer of 

hierarchy in the AHP. Then, a global weight of 

alternative  is in the form of interval weights 

since each input variable is specified by interval 

weights: 

Maximize (Minimize) 

s.t.

, 

, 

where  are normalized weights according to 

Definition 11).

The programs proposed by Entani and Tanaka 

(2007) are further simplified by substituting  in 

a maximization and  in a minimization 

problem for , thus yielding equivalent LPs:

(Absolute dominance)

 

(  )2)

s.t.

 

The LPs can be solved by inspection since they 

belong to a simple knapsack problem and detailed 

explanation is given later in pairwise dominance. 

According to pairwise dominance, alternative  at 

least dominates  if for any fixed set of feasible 

weights, the worst outcome in  at least exceeds 

1) Note that the constraints ,  are unnecessary since each  is assumed to be normalized. 

2) Note that we would have to use  instead of  for a maximization problem and  instead of  for a minimization 

problem if  was not normalized: 

.
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the best outcome in . 

Definition 2: Alternative  is at least preferred to 

 if and only if  where 

.

The set of dominated alternatives resulted from 

absolute dominance is a subset of the set of 

dominated alternatives from pairwise dominance 

due to the fact that  

(Ahn, 2006). Thus, if alternative  absolutely 

dominates , then  pairwisely dominates , 

but the reverse does not hold. Furthermore, the LP 

in Definition 2 also belongs to a class of knapsack 

problem and thus can be solved by the following 

procedure:

Step 1. Allot  to all .

Step 2. Allot the residual weight  

to the lowest  for some  if 

; otherwise, allot . 

Successively allot the residual weight to the next 

lowest  for some  and continue 

this step until all the residual weights are used up.

To exemplify this procedure, suppose that the 

referenced priority weights and local weights of 

two alternatives  are given as in 

Table 1.

<Table 1> Referenced priority weights and local 
weights of two alternatives

Criteria

Referenced priority weights

Local weights

To establish pairwise dominance between  and 

, we solve the following LP: 

 = Minimize 

s.t. 

, , , 

First, we allot  to ,  to , and  to 

. Next, we allot the residual weight of  to  

having the lowest coefficient, say  

. The optimal weighting 

vector turns out to be  

with , which means that  at 

least dominates  on the basis of pairwise 

dominance. The interval global priorities for 

alternatives  and  on the basis of absolute 

dominance will be  

and  respectively. 

Even though the intervals show a strong tendency 
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of  over  (a very small overlapping between 

 and ), it cannot be said that  

dominates  based on absolute dominance.

4. Concluding remarks

In this paper, we presented an LP formulation to 

normalize interval weights, inspired by Entani and 

Tanaka (2007). We also showed that this goal can 

be achieved by finding their extreme points and 

presented how they can be found. Knowing the 

extreme points is not only helpful in removing 

redundant bounds which may be present in the 

interval weights but also in solving 

decision-making problems with interval weights. 

The absolute dominance proposed by the authors is 

also extended to pairwise dominance which makes 

it possible to identify at least more dominated 

alternatives under the same information.
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국문요약

구간데이터 정규화와

계층적 분석과정에의 활용

3)김은영*․안병석**

Entani and Tanaka(2007)는 불확실한 데이터를 처리하기에 적합한 구간 평가결과를 얻는 새로운 방

법을 제시하였다. 무엇보다 그들의 방법은 구간 데이터를 정규화하여 redundant 데이터를 제거하는 데 

특징이 있다. 더 나가 정규화된 구간데이터를 활용하여 계층분석과정(AHP)에서 최종 구간 우선순위벡

터를 도출한다. 이 논문에서는 구간 데이터의 정규화 목적을 달성하기 위해 구간 데이터의 꼭지점을 

구하는 쉽고 간편한 휴리스틱 방법을 제시한다. 한편 간단한 검사법을 활용하여 정규화된 데이터를 

활용하여 최종 구간 우선순위벡터를 도출하는 방법을 제시하고자 한다. 아울러 Entani and Tanaka 

(2007)가 제시한 대안간 지배관계 규명 방법을 확장한 지배관계 규명 방법을 제시하고자 한다.
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