DOI QR코드

DOI QR Code

Atomic Layer Deposition of TiO2 using Titanium Isopropoxide and H2O: Operational Principle of Equipment and Parameter Setting

  • Cho, Karam (School of Electrical and Computer Engineering, University of Seoul) ;
  • Park, Jung-Dong (Division of Electronics and Electrical Engineering, Dongguk University) ;
  • Shin, Changhwan (School of Electrical and Computer Engineering, University of Seoul)
  • Received : 2015.11.25
  • Accepted : 2016.01.05
  • Published : 2016.06.30

Abstract

Titanium dioxide ($TiO_2$) films are deposited by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. The operating instructions for the ALD equipment are described in detail, along with the settings for relevant parameters. The thickness of the $TiO_2$ film is measured, and thereby, the deposition rate is quantitatively estimated to verify the linearity of the deposition rate.

Keywords

References

  1. Kemell, M., Pore, V., Tupala, J., Ritala, M., Leskela, M., "Atomic layer deposition of nanostructured $TiO_2$ photocatalysts via template approach", Chemistry of Materials, Vol.19, No.7, pp.1816-20, 2007. https://doi.org/10.1021/cm062576e
  2. Euvananont, C., Junin, C., Inpor, K., Limthongkul, P., Thanachayanont, C., "$TiO_2$ optical coating layers for self-cleaning applications", Ceramics International, Vol.34, No.4, pp.1067-71, 2008. https://doi.org/10.1016/j.ceramint.2007.09.043
  3. Wang, C.-W., Chen, S.-F., Chen, G.-T., "Gamma-ray-irradiation effects on the leakage current and reliability of sputtered $TiO_2$ gate oxide in metal-oxide-semiconductor capacitors", J. Appl. Phys., Vol.91, pp.9198-203, 2002. https://doi.org/10.1063/1.1473668
  4. Frohlich, K., Tapajna, M., Rosova, A., Dobrocka, E., Husekova, K., Aarik, J., et al., "Growth of highdielectric- constant $TiO_2$ films in capacitors with $RuO_2$ electrodes", Electrochemical and Solid-State Letters, Vol.11, No.6, pp.G19-G21, 2008. https://doi.org/10.1149/1.2898184
  5. Wu, T., Wu, C., Chen, M., "Highly insulative barium zirconate-titanate thin films prepared by rf magnetron sputtering for dynamic random access memory applications", Appl. Phys. Lett., Vol.69, No.18, pp.2659-61, 1996. https://doi.org/10.1063/1.117550
  6. Kim, K., Lee, S., "Integration of lead zirconium titanate thin films for high density ferroelectric random access memory", J. Appl. Phys., Vol.100, No.5, pp.051604, 2006. https://doi.org/10.1063/1.2337361
  7. Aarik, L., Arroval, T., Rammula, R., Mandar, H., Sammelselg, V., Aarik, J., "Atomic layer deposition of TiO 2 from TiCl 4 and O 3", Thin Solid Films, Vol.542, pp.100-7, 2013. https://doi.org/10.1016/j.tsf.2013.06.074
  8. Elam, J., Schuisky, M., Ferguson, J., George, S., "Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH 3", Thin Solid Films, Vol.436, No.2, pp.145-56, 2003. https://doi.org/10.1016/S0040-6090(03)00533-9
  9. Ritala, M., Leskela, M., Niinisto, L., Haussalo, P., "Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films", Chemistry of materials, Vol.5, No.8, pp.1174-81, 1993. https://doi.org/10.1021/cm00032a023
  10. Xie, Q., Jiang, Y.-L., Detavernier, C., Deduytsche, D., Van Meirhaeghe, R. L., Ru, G.-P., et al., "Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and $H_2O$", J. Appl. Phys., Vol.102, No.8, pp.083521, 2007. https://doi.org/10.1063/1.2798384