DOI QR코드

DOI QR Code

Monitoring of Microbial Contamination in Air Purifier for Preventing Cross-contamination

교차오염방지를 위한 공기정화제품에서 미생물 오염도 분석

  • Yeom, Seung-Mok (Department of Food Science and Technology, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University) ;
  • Lee, Myung-Suk (Department of Microbiology, Pukyong National University)
  • Received : 2016.03.14
  • Accepted : 2016.05.02
  • Published : 2016.06.30

Abstract

Many atmospheric pollutants including chemical agents, house dust, and microorganisms cause building-related illnesses through respiration in humans. This study was conducted to analyze the profiles of microbial pollutants in air purifiers used in home, office and playschool. Dominant eleven species of microorganisms were isolated and identified in environmental air and air purifiers. Among them, Staphylococcus sp., Micrococcus sp. and Bacillus sp. are the most dominant species. By phylogenetic analysis of the 16S rRNA gene, the dominant bacteria were identified as Staphylococcus epidermidis, Micrococcus luteus and Bacillus epidermidis, respectively. It has been known that these bacterial species are closely related with food spoilage and human infectious disease. Thus, these results indicate that microbial pathogens related with human illnesses through respiration will be contaminated in air purifiers and also need to develop a method to control those of pathogens for human health.

실내 공기질 관리의 중요성이 대두되면서 쾌적한 실내 환경에 도움을 주는 공기청정 기능과 습도 조절 기능을 동시에 갖춘 제습기와 공기청정기가 각광받고 있다. 하지만 오랜 기간 동안 공기정화제품을 사용하게 될 시에는 필터가 오염되어 본연의 기능을 상실하게 되는 것으로 알려져 있지만 이에 대한 구체적인 연구나 보고는 드문 편이다. 이에 본 연구에서는 가정과 사무실 등에서 사용한 공기정화제품을 수거하여 주요 부위별 미생물 오염도 및 주요 오염 미생물들을 분석하였다. 그 결과, 4 종류의 공기정화제품에서 오염도가 높은 부위는 필터부위, 물이 직접 닿는 부위 및 공기가 외부로부터 직접적으로 들어오는 입구부위 등에서 미생물학적 오염도가 가장 높았다. 하지만 공기정화제품은 사용하는 환경과 조건에 따라서 미생물학적 오염도 및 오염 미생물의 성상은 각각 다르게 나타났다. 하지만 이들 공기정화제품들에는 공통적으로 Staphylococcus sp., Micrococcus sp. 그리고 Bacillus sp.의 세균과 Cladosporium sp. 및 Penicillium sp.의 진균이 공통적으로 오염되어 있는 우점종인 것으로 분석되었다.

Keywords

References

  1. Air Quality Management Act for Underground Living Spaces. Ministry of Environment. Seoul (1996).
  2. World Health Organization. The Right to Healthy Indoor Air-Report on a WHO Meeting, Bilthoven. The Netherlands, European Healthy 21 Targets 10.13 (2000).
  3. Pronczu, J.: Indoor air pollution. World Health Organization, 7, pp. 40 (2008).
  4. Abdul-Wahab, S.A.: Sick building syndrome in public buildings and workplaces. Springer, USA, pp. 25-26 (2011).
  5. Sekine, Y., Fukuda, M., Takao, Y., Ozano, T., Sakuramoto, H. and Wang, K.W.: Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters. Environ. Technol., 33, 1983-1989 (2011).
  6. Russell, J.A., Hu, Y., Chau, L., Pauliushchyk, M., Anastopoulos, I., Anandan, S. and Waring, M.S.: Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities. Appl. Environ. Microbiol., 80, 4805-4813 (2014). https://doi.org/10.1128/AEM.00595-14
  7. Den Aantrekker, E.D., Beumer, R.R., van Gerwen, S.J.C., Zwietering, M.H., van Schothorst, M. and Boom, R.M.: Estimating the probability of recontamination via the air using Monte Carlo simulations. Int. J. Food Microbiol., 87, 1-15 (2003). https://doi.org/10.1016/S0168-1605(03)00041-2
  8. Holah, J., Margas, E., Hagberg, R., Warren, B., Fraser-Heaps, J. and Mortimore, S.: Identifying and controlling microbiological cross-contamination. Food Safety Mag., Feb/Mar, 54-61 (2012).
  9. Reij, M. W., Den Aantrekker, E. D. and ILSI Europe Risk Analysis in Microbiology Task Force.: Recontamination as a source of pathogens in processed foods. Int. J. Food Microbiol., 91, 1-11 (2004). https://doi.org/10.1016/S0168-1605(03)00295-2
  10. Rorvik, L.M., Skjerve, E., Knudsen, B.R. and Yndestad, M.: Risk factors for contamination of smoked salmon with Listeria monocytogenes during processing. Int. J. Food Microbiol., 37, 215-219 (1997). https://doi.org/10.1016/S0168-1605(97)00057-3
  11. Goff, H.D. and Slade, P.J.: Transmission of a Listeria sp. through a cold-air wind tunnel. Dairy Food Environ. Sanit., 10, 340-343 (1990).
  12. Radmore, K., Holzapfel, W.H. and Luck, H.: Proposed guidelines for maximum acceptable air-borne microorganism levels in dairy processing and packaging plants. Int. J. Food Microbiol., 6, 91-95 (1988). https://doi.org/10.1016/0168-1605(88)90088-8
  13. Brown, K.L.: Guidelines on Air Quality Standards for the Food Industry. Campden and Chorleywood Food Research Association, Hertfordshire, UK (2005).
  14. European Hygienic Engineering and Design Group (EHEDG).: Guidelines on air handling in the food industry. Trends Food Sci. Tech., 17, 331-336 (2006). https://doi.org/10.1016/j.tifs.2005.12.008
  15. Saitou, N. and Nei, M.: The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406-425 (1987).
  16. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S.: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28, 2731-2739 (2011). https://doi.org/10.1093/molbev/msr121
  17. Moon, Y.S., Koo, Y.S. and Jung O.K.: Analysis of sensitivity to prediction of particulate matters and related meteorological fields using the WRF-Chem model during Asian dust episode days. J. Korean Earth Sci. Soc., 35, 1-18 (2014). https://doi.org/10.5467/JKESS.2014.35.1.1
  18. Lee, A.M., Kim, N.Y., Kim, S.Y. and Kim, J.S.: Distribution and characteristics of airborne microorganisms in indoor environment of schools. Korean J. Microbiol., 41, 188-194 (2005).
  19. Kim, S.H. and Kim, Y.K.: A study on microbial pollution of indoor air at elderly care facilities. J. Korea Acad. Industr. Coop. Soc., 10, 2485-2491 (2009). https://doi.org/10.5762/KAIS.2009.10.9.2485
  20. Seo, M.S., Lee, S.M. and Hong, J.Y.: The Characteristic study of the microbial habitat in the Muwisa museum, Gangjin. J Conserv. Sci., 29, 333-343 (2013). https://doi.org/10.12654/JCS.2013.29.4.04
  21. Lee, S.W., Jung, H.M., Park, S.J., Choe, B., Kim, J.H., Lee, B.R., Joo, Y.L., Kwon, O.S. and Jheong, W.H.: Identification and phylogenetic analysis of culturable bacteria in the bioareosol from several environments. Korean J. Microbiol. Biotechnol., 43, 142-149 (2015). https://doi.org/10.4014/mbl.1503.03008
  22. Naruka, K. and Gau, J.: Microbial air contamination in a school. Int. J. Curr. Microbiol. App. Sci., 2, 404-410 (2013).
  23. Cheong, C.D., Neumeister-Kemp, H.G., Dingle, P. and Hardy, G. St J.: The use of HEPA air filters to control airborne indoor fungi. In IAQ Conference 2001: Moisture, Microbes and Health Effects: Indoor Air Quality and Moisture in Buildings, 4-7 November, San Francisco (2001).
  24. Eduard, W.: Exposure to non-infectious microorganisms and endotoxins in agriculture. Ann. Agric. Environ. Med., 4, 179-186 (1997).
  25. Grisoli, P., Rodolfi, M., Villani, S., Grignani, E., Cottica, D., Berri, A., Picco, A.M., and Dacarro, C.: Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ Res., 109, 135-142 (2009). https://doi.org/10.1016/j.envres.2008.11.001
  26. Valerio, F., De Bellis, P., Di Biase, M., Lonigro, S.L., Giussani, B., Visconti, A., Lavermicocca, P., and Sisto, A.: Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol., 3, 278-285 (2012).
  27. Darouiche, R.O.: Device-associated infections: a macroproblem that starts with microadherence. Clin. Infect Dis., 3, 1567-1572 (2001).
  28. Upadhyay, R.K., Dwivedi, P. and Ahmad S.: Screening of antibacterial activity of six plant essential oils against pathogenic bacterial strains. Asian J. Med. Sci., 2, 152-158 (2010).
  29. Reuben, A., Anaissie, E., Nelson, P.E., Hashem, R., Legrand, C., Ho, D.H. and Bodey, G.P.: Antifungal susceptibility of 44 clinical isolates of Fusarium species determined by using a broth microdilution method. Antimicrob. Agents Chemother., 33, 1647-1649 (1989). https://doi.org/10.1128/AAC.33.9.1647
  30. Mack, D., Davies, A.P., Harris, L.G., Jeeves, R., Pascoe, B., Knobloch, J.K.M., Rohde, H., and Wilkinson, T.S.: Staphylococcus epidermidis in biomaterial-associated infections. In Biomaterials Associated Infection: Immunological Aspects and Antimicrobial Strategies (Moriarty, T.F., Zaat, S.A.J., Busscher H.J. eds.) Springer, New York, pp. 25-26 (2013).