References
- F. Black and M. Scholes, The pricing of options andcorporate liabilities, J. Polit. Econ., 81 (1973), 637-654. https://doi.org/10.1086/260062
- P. Wilmott, Paul Wilmott on Quantitative Finance, John Wiley and Sons (2006).
- H. Geman and M. Yor, Bessel processes, Asian option and perpetuities, Math. Financ., 3 (1993), 349-375. https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
- V. Linetsk, Spectral expansions for Asian (average price) options, Oper. Res., 52(6) (2004), 856-867. https://doi.org/10.1287/opre.1040.0113
- A.G.Z. Kemna and A.C.F. Vorst, A pricing method for options based on average asset values, J. Bank. Financ., 14(1) (1990), 113-129. https://doi.org/10.1016/0378-4266(90)90039-5
- J.E. Ingersoll, Theory of Financial Decision Making, Rowman and Littlefield, Savage, Md (1987).
- L.C.G. Rogers and Z. Shi, The value of an Asian option, J. Appl. Prob., 32(4) (1995), 1077-1088. https://doi.org/10.1017/S0021900200103559
- J. Vecer, Unified pricing of Asian options, Risk, 15(6) (2002), 113-116.
- J. Cox, Notes on option pricing I: Constant elasticity of variance diffusions, (1975) Working paper, Stanford University (Reprinted in Portf, J., 1996, manage 22, 15-17).
- S.L. Heston, Closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343. https://doi.org/10.1093/rfs/6.2.327
- J.P. Fouque, G. Papanicolaou, and R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations aux derivees partielles et applications, in honour of Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 517-526.
- P. Carr, H. Geman, D. Madam, and M. Yor, Stochastic volatility for Levy processes, Math. Financ., 13(3) (2003), 345-382. https://doi.org/10.1111/1467-9965.00020
- B. Peng, F. Peng, Pricing arithmetic Asian options under the CEV process, J. Econ. Financ. Adm. Sci., 15(29) (2010), 7-13.
- J.P. Fouque and C.H. Han, Pricing Asian options with stochastic volatility, Quant. Financ., 3(5) (2003), 352-362.
- D. Lemmens, L.Z. Liang, J. Tempere, and A. De Schepper, Pricing bounds for discrete arithmetic Asian options under Levy models, Physica A, 389(22) (2010), 5193-5207. https://doi.org/10.1016/j.physa.2010.07.026
- J.H. Kim, J.W. Lee, S.P. Zhu, and S.H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus. 30(6) (2014), 753-765. https://doi.org/10.1002/asmb.2006
- J.H. Yoon, J.H. Kim, and S.Y. Choi, Multiscale analysis of a perpetual American option with the stochastic elasticity of variance, Appl. Math. Lett., 26 (2013), 670-675. https://doi.org/10.1016/j.aml.2012.11.015
- S.J. Yang, M.K. Lee, and J.H. Kim, Portfolio optimization under the stochastic elasticity of variance, Stoch. Dynam., 14(03) (2014), 1350024. https://doi.org/10.1142/S021949371350024X
- J.H. Kim, J.H. Yoon, J. Lee, and S.Y. Choi, On the stochastic elasticity of variance diffusions, Econ. Model., 51 (2015), 263-268. https://doi.org/10.1016/j.econmod.2015.08.011
- B. Oksendal, Stochastic Differential Equations. Springer, New York (2003).
- J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Multiscale Stochastic Volatility for Equity, Interest Rate and Credit Derivatives, Cambridge University Press, Cambridge (2011).
- A.G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operators, Math. Assoc. America, 108 (2001), 855-860.
- J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J. Appl. Math., 62(5) (2003), 1648-1665.
- L.B.G. Andersen and V.V. Piterbarg, Moment explosions in stochastic volatility models, Financ. Stoch., 11 (2007), 29-50.