References
- Abramowicz, W. and Jones, N. (1984a), "Dynamic axial crushing of square tubes", Int. J. Impact Eng., 2(2), 179-208. https://doi.org/10.1016/0734-743X(84)90005-8
- Abramowicz, W. and Jones, N. (1984b), "Dynamic axial crushing of circular tubes", Int. J. Impact Eng., 2(3), 263-281. https://doi.org/10.1016/0734-743X(84)90010-1
- Acar, E., Guler, M.A., Gerceker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin-Wall. Struct., 49(1), 94-105. https://doi.org/10.1016/j.tws.2010.08.010
- Athan, T.W. and Papalambros, P.Y. (1999), "A note on weighted criteria methods for compromise solutions in multi-objective optimization", Eng. Optim., 27(2), 155-176. https://doi.org/10.1080/03052159608941404
- Avalle, M., Chiandussi, G. and Belingardi, G. (2002), "Design optimization by response surface methodology: application to crashworthiness design of vehicle structures", Struct. Multidiscip. Optim., 24(4), 325-332. https://doi.org/10.1007/s00158-002-0243-x
- Chen, M.F. and Tzeng, G.H. (2004), "Combining grey relation and TOPSIS concepts for selecting an expatriate host country", Math. Comput. Model, 40(13), 1473-1490. https://doi.org/10.1016/j.mcm.2005.01.006
- Chiandussi, G. and Avalle, M. (2002), "Maximization of the crushing performance of a tubular device by shape optimization", Comput. Struct., 80(27-30), 2425-2432. https://doi.org/10.1016/S0045-7949(02)00247-X
- Deng, H., Yeh, C.H. and Willis, R.J. (2000), "Inter-company comparison using modified TOPSIS with objective weights", Comput. Operat. Res., 27(10), 963-973. https://doi.org/10.1016/S0305-0548(99)00069-6
- Ebrahimi, S. and Vahdatazad, N. (2015), "Multi-objective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads", Thin-Wall. Struct., 88, 90-104. https://doi.org/10.1016/j.tws.2014.12.004
- Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Comput. Struct., 83(25-26), 2121-2136. https://doi.org/10.1016/j.compstruc.2005.02.025
- Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q. (2015), "Multi objective robust design optimization of fatigue life for a truck cab", Reliab. Eng. Syst. Safe., 135, 1-8. https://doi.org/10.1016/j.ress.2014.10.007
- Forsberg, J. and Nilsson, L. (2005), "On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness", Struct. Multidiscip. Optim., 29(3), 232-243. https://doi.org/10.1007/s00158-004-0487-8
- Forsberg, J. and Nilsson, L. (2006), "Evaluation of response surface methodologies used in crashworthiness optimization", Int. J. Impact Eng., 32(5), 759-777. https://doi.org/10.1016/j.ijimpeng.2005.01.007
- Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2007), "Design optimization of regular hexagonal thin walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43(6-7), 555-565. https://doi.org/10.1016/j.finel.2006.12.008
- Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2008), "Multi-objective optimization of multi-cell sections for the crashworthiness design", Int. J. Impact Eng., 35(11), 1355-1367. https://doi.org/10.1016/j.ijimpeng.2007.09.003
- Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2009), "Crashworthiness design for foam filled thin-wall structures", Mater. Des., 30(6), 2024-2032. https://doi.org/10.1016/j.matdes.2008.08.044
- Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Berlin/Heidelberg/New York, Springer-Verlag.
- Jansson, T., Nilsson, L. and Redhe, M. (2003), "Using surrogate models and response surface in structural optimization with application to crashworthiness design and sheet metal forming", Struct Multidiscip. Optim., 25(2), 129-140. https://doi.org/10.1007/s00158-002-0279-y
- Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, Piscataway, NJ, USA, November-December, pp. 1942-1948.
- Kim, H.S. (2002), "New extruded multi cell aluminum profile for maximum crush energy absorption and weight efficiency", Thin-Wall. Struct., 40(4), 311-327. https://doi.org/10.1016/S0263-8231(01)00069-6
- Kodiyalam, S., Yang, R.J., Gu, L. and Tho, C.H. (2004), "Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment", Struct. Multidiscip. Optim., 26(3), 256-263. https://doi.org/10.1007/s00158-003-0343-2
- Lanzi, L., Castelletti, M.L. and Anghileri, M. (2004), "Multi-objective optimization of composite absorber shape under crashworthiness requirements", Compos. Struct., 65(3-4), 433-441. https://doi.org/10.1016/j.compstruct.2003.12.005
- Lee, T.H. and Lee, K. (2005), "Multi-criteria shape optimization of a funnel in cathode ray tubes using a response surface model", Struct. Multidiscip. Optim., 29(5), 374-381. https://doi.org/10.1007/s00158-004-0478-9
- Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Process. Technol., 130-131, 490-496. https://doi.org/10.1016/S0924-0136(02)00794-X
- Li, M., Deng, Z., Guo, H., Liu, R. and Ding, B. (2014), "Optimizing crashworthiness design of square honeycomb structure", J. Cent. South Univ., 21(3), 912-919. https://doi.org/10.1007/s11771-014-2018-0
- Liao, X.T., Li, Q., Yang, X.J., Zhang, W.G. and Li, W. (2007), "Multiobjective optimization for crash safety design of vehicles using stepwise regression model", Struct. Multidiscip. Optim, 35(6), 561-569. DOI: 10.1007/s00158-007-0163-x
- Lin, C.T., Chang, C.W. and Chen, C.B. (2006), "The worst ill-conditioned silicon wafer slicing machine detected by using Grey relational analysis", Int. J. Adv. Manuf. Technol., 31(3), 388-395. https://doi.org/10.1007/s00170-006-0685-1
- Lu, G. and Yu, T. (2003), Energy Absorption of Structures and Materials, Wood Head Publishing Ltd., Cambridge, England.
- Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology, Wiley, New York, NY, USA.
- Oktem, H., Erzurumlu, T. and Kurtaran, H. (2005), "Application of response surface methodology in the optimization of cutting conditions for surface roughness", J. Mater. Process. Technol., 170(1-2), 11-16. https://doi.org/10.1016/j.jmatprotec.2005.04.096
- Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F. (2006), "Sensitivity analysis practices: Strategies for model-based inference", Reliab. Eng. Syst. Safe., 91(10-11), 1109-1125. https://doi.org/10.1016/j.ress.2005.11.014
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons.
- Sinha, K. (2007), "Reliability-based multi-objective optimization for automotive crashworthiness and occupant safety", Struct. Multidiscip. Optim., 33(3), 255-268. https://doi.org/10.1007/s00158-006-0050-x
- Sun, G., Li, G., Stone, M. and Li, Q. (2010a), "A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials", Compos. Mater. Sci., 49(3), 500-511. https://doi.org/10.1016/j.commatsci.2010.05.041
- Sun, G., Li, G., Hou, S., Zhou, S., Li, W. and Li, Q. (2010b), "Crashworthiness design for functionally graded foam-filled thin-walled structures", Mater. Sci. Eng. A-Struct., 527(7-8), 1911-1919. https://doi.org/10.1016/j.msea.2009.11.022
- Sun, G., Song, X., Baek, S. and Li, Q. (2014), "Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel", Struct. Multidiscip. Optim., 49(6), 897-913 https://doi.org/10.1007/s00158-013-1017-3
- Wang, G.G. and Shan, S. (2007), "Review of metamodeling techniques in support of engineering design optimization", J. Mech. Des., 129(4), 370-380. https://doi.org/10.1115/1.2429697
- Wierzbicki, T. (1998), "Crash behavior of box columns filled with aluminum honeycomb or foam", Compos. Struct., 68(4), 343-367. https://doi.org/10.1016/S0045-7949(98)00067-4
- Xiang, Y.J., Wang, Q., Fan, Z.J. and Fang, H.B. (2006), "Optimal crashworthiness design of a spot-welded thin-walled hat section", Finite Elem. Anal. Des., 42(10), 846-855. https://doi.org/10.1016/j.finel.2006.01.001
- Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P. and Wang, B.P. (2005), "Metamodeling development for vehicle frontal impact simulation", J. Mech. Des., 127(5), 1014-1020. https://doi.org/10.1115/1.1906264
- Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multi-objective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mater. Des., 32, 4449-4460. https://doi.org/10.1016/j.matdes.2011.03.060
- Yin, H., Wen, G., Liu, Z. and Qing, Q. (2014), "Crashworthiness optimization design for foam-filled multi-cell thin-walled structures", Thin-Wall. Struct., 75, 8-17. https://doi.org/10.1016/j.tws.2013.10.022
- Zarei, H.R. and Kroger, M. (2006), "Multi-objective crashworthiness optimization of circular aluminum tubes", Thin-Wall. Struct., 44(3), 301-308. https://doi.org/10.1016/j.tws.2006.03.010
- Zarei, H.R. and Kroger, M. (2007), "Optimum honeycomb filled crash absorber design", Mater. Des., 29(1), 193-204. https://doi.org/10.1016/j.matdes.2006.10.013
- Zhang, Z., Liu, S. and Tang, Z. (2010), "Crushworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads", Thin-Wall. Struct., 48(1), 9-18. https://doi.org/10.1016/j.tws.2009.08.002
- Zhang, Z., Liu, S. and Tang, Z. (2011), "Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads", Thin-Wall. Struct., 49(9), 1071-1079. https://doi.org/10.1016/j.tws.2011.03.017
Cited by
- Crashworthiness efficiency optimisation for two-directional functionally graded foam-filled tubes under axial crushing impacts vol.22, pp.3, 2017, https://doi.org/10.1080/13588265.2016.1258959
- Steel processing effects on crash performance of vehicle safety related applications vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.351
- Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads vol.48, pp.1, 2016, https://doi.org/10.2478/jtam-2018-0007
- Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.179
- Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading vol.31, pp.2, 2016, https://doi.org/10.12989/scs.2019.31.2.133