DOI QR코드

DOI QR Code

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Received : 2015.08.04
  • Accepted : 2016.05.14
  • Published : 2016.06.30

Abstract

The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

Keywords

References

  1. Abramowicz, W. and Jones, N. (1984a), "Dynamic axial crushing of square tubes", Int. J. Impact Eng., 2(2), 179-208. https://doi.org/10.1016/0734-743X(84)90005-8
  2. Abramowicz, W. and Jones, N. (1984b), "Dynamic axial crushing of circular tubes", Int. J. Impact Eng., 2(3), 263-281. https://doi.org/10.1016/0734-743X(84)90010-1
  3. Acar, E., Guler, M.A., Gerceker, B., Cerit, M.E. and Bayram, B. (2011), "Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations", Thin-Wall. Struct., 49(1), 94-105. https://doi.org/10.1016/j.tws.2010.08.010
  4. Athan, T.W. and Papalambros, P.Y. (1999), "A note on weighted criteria methods for compromise solutions in multi-objective optimization", Eng. Optim., 27(2), 155-176. https://doi.org/10.1080/03052159608941404
  5. Avalle, M., Chiandussi, G. and Belingardi, G. (2002), "Design optimization by response surface methodology: application to crashworthiness design of vehicle structures", Struct. Multidiscip. Optim., 24(4), 325-332. https://doi.org/10.1007/s00158-002-0243-x
  6. Chen, M.F. and Tzeng, G.H. (2004), "Combining grey relation and TOPSIS concepts for selecting an expatriate host country", Math. Comput. Model, 40(13), 1473-1490. https://doi.org/10.1016/j.mcm.2005.01.006
  7. Chiandussi, G. and Avalle, M. (2002), "Maximization of the crushing performance of a tubular device by shape optimization", Comput. Struct., 80(27-30), 2425-2432. https://doi.org/10.1016/S0045-7949(02)00247-X
  8. Deng, H., Yeh, C.H. and Willis, R.J. (2000), "Inter-company comparison using modified TOPSIS with objective weights", Comput. Operat. Res., 27(10), 963-973. https://doi.org/10.1016/S0305-0548(99)00069-6
  9. Ebrahimi, S. and Vahdatazad, N. (2015), "Multi-objective optimization and sensitivity analysis of honeycomb sandwich cylindrical columns under axial crushing loads", Thin-Wall. Struct., 88, 90-104. https://doi.org/10.1016/j.tws.2014.12.004
  10. Fang, H., Rais-Rohani, M., Liu, Z. and Horstemeyer, M.F. (2005), "A comparative study of metamodeling methods for multi-objective crashworthiness optimization", Comput. Struct., 83(25-26), 2121-2136. https://doi.org/10.1016/j.compstruc.2005.02.025
  11. Fang, J., Gao, Y., Sun, G., Xu, C. and Li, Q. (2015), "Multi objective robust design optimization of fatigue life for a truck cab", Reliab. Eng. Syst. Safe., 135, 1-8. https://doi.org/10.1016/j.ress.2014.10.007
  12. Forsberg, J. and Nilsson, L. (2005), "On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness", Struct. Multidiscip. Optim., 29(3), 232-243. https://doi.org/10.1007/s00158-004-0487-8
  13. Forsberg, J. and Nilsson, L. (2006), "Evaluation of response surface methodologies used in crashworthiness optimization", Int. J. Impact Eng., 32(5), 759-777. https://doi.org/10.1016/j.ijimpeng.2005.01.007
  14. Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2007), "Design optimization of regular hexagonal thin walled columns with crashworthiness criteria", Finite Elem. Anal. Des., 43(6-7), 555-565. https://doi.org/10.1016/j.finel.2006.12.008
  15. Hou, S.J., Li, Q., Long, S.Y., Yang, X.J. and Li, W. (2008), "Multi-objective optimization of multi-cell sections for the crashworthiness design", Int. J. Impact Eng., 35(11), 1355-1367. https://doi.org/10.1016/j.ijimpeng.2007.09.003
  16. Hou, S., Li, Q., Long, S., Yang, X. and Li, W. (2009), "Crashworthiness design for foam filled thin-wall structures", Mater. Des., 30(6), 2024-2032. https://doi.org/10.1016/j.matdes.2008.08.044
  17. Hwang, C.L. and Yoon, K. (1981), Multiple Attribute Decision Making: Methods and Applications, Berlin/Heidelberg/New York, Springer-Verlag.
  18. Jansson, T., Nilsson, L. and Redhe, M. (2003), "Using surrogate models and response surface in structural optimization with application to crashworthiness design and sheet metal forming", Struct Multidiscip. Optim., 25(2), 129-140. https://doi.org/10.1007/s00158-002-0279-y
  19. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the IEEE International Joint Conference on Neural Networks, Piscataway, NJ, USA, November-December, pp. 1942-1948.
  20. Kim, H.S. (2002), "New extruded multi cell aluminum profile for maximum crush energy absorption and weight efficiency", Thin-Wall. Struct., 40(4), 311-327. https://doi.org/10.1016/S0263-8231(01)00069-6
  21. Kodiyalam, S., Yang, R.J., Gu, L. and Tho, C.H. (2004), "Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment", Struct. Multidiscip. Optim., 26(3), 256-263. https://doi.org/10.1007/s00158-003-0343-2
  22. Lanzi, L., Castelletti, M.L. and Anghileri, M. (2004), "Multi-objective optimization of composite absorber shape under crashworthiness requirements", Compos. Struct., 65(3-4), 433-441. https://doi.org/10.1016/j.compstruct.2003.12.005
  23. Lee, T.H. and Lee, K. (2005), "Multi-criteria shape optimization of a funnel in cathode ray tubes using a response surface model", Struct. Multidiscip. Optim., 29(5), 374-381. https://doi.org/10.1007/s00158-004-0478-9
  24. Lee, S.H., Kim, H.Y. and Oh, I.S. (2002), "Cylindrical tube optimization using response surface method based on stochastic process", J. Mater. Process. Technol., 130-131, 490-496. https://doi.org/10.1016/S0924-0136(02)00794-X
  25. Li, M., Deng, Z., Guo, H., Liu, R. and Ding, B. (2014), "Optimizing crashworthiness design of square honeycomb structure", J. Cent. South Univ., 21(3), 912-919. https://doi.org/10.1007/s11771-014-2018-0
  26. Liao, X.T., Li, Q., Yang, X.J., Zhang, W.G. and Li, W. (2007), "Multiobjective optimization for crash safety design of vehicles using stepwise regression model", Struct. Multidiscip. Optim, 35(6), 561-569. DOI: 10.1007/s00158-007-0163-x
  27. Lin, C.T., Chang, C.W. and Chen, C.B. (2006), "The worst ill-conditioned silicon wafer slicing machine detected by using Grey relational analysis", Int. J. Adv. Manuf. Technol., 31(3), 388-395. https://doi.org/10.1007/s00170-006-0685-1
  28. Lu, G. and Yu, T. (2003), Energy Absorption of Structures and Materials, Wood Head Publishing Ltd., Cambridge, England.
  29. Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology, Wiley, New York, NY, USA.
  30. Oktem, H., Erzurumlu, T. and Kurtaran, H. (2005), "Application of response surface methodology in the optimization of cutting conditions for surface roughness", J. Mater. Process. Technol., 170(1-2), 11-16. https://doi.org/10.1016/j.jmatprotec.2005.04.096
  31. Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F. (2006), "Sensitivity analysis practices: Strategies for model-based inference", Reliab. Eng. Syst. Safe., 91(10-11), 1109-1125. https://doi.org/10.1016/j.ress.2005.11.014
  32. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. and Tarantola, S. (2008), Global Sensitivity Analysis, The Primer, John Wiley & Sons.
  33. Sinha, K. (2007), "Reliability-based multi-objective optimization for automotive crashworthiness and occupant safety", Struct. Multidiscip. Optim., 33(3), 255-268. https://doi.org/10.1007/s00158-006-0050-x
  34. Sun, G., Li, G., Stone, M. and Li, Q. (2010a), "A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials", Compos. Mater. Sci., 49(3), 500-511. https://doi.org/10.1016/j.commatsci.2010.05.041
  35. Sun, G., Li, G., Hou, S., Zhou, S., Li, W. and Li, Q. (2010b), "Crashworthiness design for functionally graded foam-filled thin-walled structures", Mater. Sci. Eng. A-Struct., 527(7-8), 1911-1919. https://doi.org/10.1016/j.msea.2009.11.022
  36. Sun, G., Song, X., Baek, S. and Li, Q. (2014), "Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel", Struct. Multidiscip. Optim., 49(6), 897-913 https://doi.org/10.1007/s00158-013-1017-3
  37. Wang, G.G. and Shan, S. (2007), "Review of metamodeling techniques in support of engineering design optimization", J. Mech. Des., 129(4), 370-380. https://doi.org/10.1115/1.2429697
  38. Wierzbicki, T. (1998), "Crash behavior of box columns filled with aluminum honeycomb or foam", Compos. Struct., 68(4), 343-367. https://doi.org/10.1016/S0045-7949(98)00067-4
  39. Xiang, Y.J., Wang, Q., Fan, Z.J. and Fang, H.B. (2006), "Optimal crashworthiness design of a spot-welded thin-walled hat section", Finite Elem. Anal. Des., 42(10), 846-855. https://doi.org/10.1016/j.finel.2006.01.001
  40. Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P. and Wang, B.P. (2005), "Metamodeling development for vehicle frontal impact simulation", J. Mech. Des., 127(5), 1014-1020. https://doi.org/10.1115/1.1906264
  41. Yin, H., Wen, G., Hou, S. and Chen, K. (2011), "Crushing analysis and multi-objective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes", Mater. Des., 32, 4449-4460. https://doi.org/10.1016/j.matdes.2011.03.060
  42. Yin, H., Wen, G., Liu, Z. and Qing, Q. (2014), "Crashworthiness optimization design for foam-filled multi-cell thin-walled structures", Thin-Wall. Struct., 75, 8-17. https://doi.org/10.1016/j.tws.2013.10.022
  43. Zarei, H.R. and Kroger, M. (2006), "Multi-objective crashworthiness optimization of circular aluminum tubes", Thin-Wall. Struct., 44(3), 301-308. https://doi.org/10.1016/j.tws.2006.03.010
  44. Zarei, H.R. and Kroger, M. (2007), "Optimum honeycomb filled crash absorber design", Mater. Des., 29(1), 193-204. https://doi.org/10.1016/j.matdes.2006.10.013
  45. Zhang, Z., Liu, S. and Tang, Z. (2010), "Crushworthiness investigation of kagome honeycomb sandwich cylindrical column under axial crushing loads", Thin-Wall. Struct., 48(1), 9-18. https://doi.org/10.1016/j.tws.2009.08.002
  46. Zhang, Z., Liu, S. and Tang, Z. (2011), "Comparisons of honeycomb sandwich and foam-filled cylindrical columns under axial crushing loads", Thin-Wall. Struct., 49(9), 1071-1079. https://doi.org/10.1016/j.tws.2011.03.017

Cited by

  1. Crashworthiness efficiency optimisation for two-directional functionally graded foam-filled tubes under axial crushing impacts vol.22, pp.3, 2017, https://doi.org/10.1080/13588265.2016.1258959
  2. Steel processing effects on crash performance of vehicle safety related applications vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.351
  3. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads vol.48, pp.1, 2016, https://doi.org/10.2478/jtam-2018-0007
  4. Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.179
  5. Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading vol.31, pp.2, 2016, https://doi.org/10.12989/scs.2019.31.2.133