DOI QR코드

DOI QR Code

Changes in Lactic Acid Bacteria and Physicochemical Properties of Yogurt Made with High Pressure Processing Treated Milk

고압처리 원유로 제조한 발효유의 저장 중 유산균 수 변화와 이화학적 특성

  • Ahn, Sung-Il (Animal Products and Food Science Program, Division of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Chung, In-Ae (Integrated R&D Team, Samyang Foods Co.) ;
  • Chung, Woon-Si (Integrated R&D Team, Samyang Foods Co.) ;
  • Jhoo, Jin-Woo (Animal Products and Food Science Program, Division of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Gur-Yoo (Animal Products and Food Science Program, Division of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Jeon, Jung-Tae (Integrated R&D Team, Samyang Foods Co.)
  • 안성일 (강원대학교 동물생명과학대학 동물응용과학부 축산식품과학전공) ;
  • 정인애 (삼양식품(주) 통합 R&D팀) ;
  • 정운시 (삼양식품(주) 통합 R&D팀) ;
  • 주진우 (강원대학교 동물생명과학대학 동물응용과학부 축산식품과학전공) ;
  • 김거유 (강원대학교 동물생명과학대학 동물응용과학부 축산식품과학전공) ;
  • 전정태 (삼양식품(주) 통합 R&D팀)
  • Received : 2016.02.26
  • Accepted : 2016.05.18
  • Published : 2016.06.30

Abstract

This study was carried out to investigate the physicochemical and fermentation properties of yogurt made from high pressure processing (HPP) treated milk. Raw milk and commercial yogurt starter were used to make yogurt. Raw milk was HPP treated at 350 or 450 MPa (HPP 350 or 450) for 15 min or heat treated at $80^{\circ}C$ for 10 min. The numbers of lactic acid bacteria of the HPP treated group (HPP yogurt) rapidly increased during 2~4 h, whereas there was not significant difference from control (P<0.05). Titratable acidity of all samples increased, and pH decreased during storage from 0.99 to 1.24%, as well as from 4.59 to 4.20, respectively. It is confirmed that these values are in general ranges for yogurt. Control showed higher viscosity than HPP 350. Syneresis was significantly lower than that of the control (P<0.05). Based on the data obtained from the present study, HPP treatment was effective to enhance the quality of yogurt.

본 연구에서는 고압처리(high pressure processing) 한 원유를 이용하여 발효유를 제조하고, 발효특성 및 저장 기간 물리 화학적 특성의 변화를 살펴보았다. 고압처리 한 원유를 이용하여 발효유 제조 시 발효 초반에 유산균이 급격히 증식 됨을 확인하였으나, 발효 완료 후 총 유산균 수는 대조군과 크게 차이가 나지 않았다. 저장 기간 중 실험군과 대조군 모두 유산균 수가 서서히 감소하는 경향을 나타내었다. 또한 산도 및 pH는 각 군 모두 정상적인 발효유의 범위를 나타내었다. 각 군의 점도를 대조해 본 결과 대조군이 실험군보다 점도가 높게 나타났으나, syneresis는 450 MPa 처리군이 대조군보다 유의적으로 적게 발생한 것으로 나타났다(P<0.05). 따라서 적절한 압력을 이용한 원유의 고압처리는 발효유의 물성을 개선하는 데 효과가 있다고 할 수 있으며, 이 분야에 관한 연구가 좀 더 이루어져야 할 필요가 있다.

Keywords

References

  1. Hekmat S, Reid G. 2006. Sensory properties of probiotic yogurt is comparable to standard yogurt. Nutr Res 26: 163-166. https://doi.org/10.1016/j.nutres.2006.04.004
  2. da Cruz AG, Faria JSF, Saad SMI, Bolini HMA, Sant'Ana AS, Cristianini M. 2010. High pressure processing and pulsed electric fields: potential use in probiotic dairy foods processing. Trends Food Sci Technol 21: 483-493. https://doi.org/10.1016/j.tifs.2010.07.006
  3. Lee JL, Huh CS, Baek YJ. 1999. Utilization of fermented milk and it's health promotion. Korean J Dairy Sci Technol 17: 58-71.
  4. Park J, Na S, Lee Y. 2010. Present and future of non-thermal food processing technology. Food Science and Industry 43(1): 2-20.
  5. Smelt JPPM. 1998. Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9: 152-158. https://doi.org/10.1016/S0924-2244(98)00030-2
  6. Hite BH. 1899. The effect of pressure in the preservation of milk. Bull West Virg Univ Agric Exp Stat 58: 15-35.
  7. Horie Y, Kimura K, Ida M, Yosida Y, Ohki K. 1991. Jam preparation by pressurization. Nippon Nogeikagaku Kaishi 65: 975-980. https://doi.org/10.1271/nogeikagaku1924.65.975
  8. Lim CM, Joo TW, Hong SH, Park SY, Park JH, Jeon GY, Jung WS, Kim JT, Kim GY, Jhoo JW. 2015. Effect of high pressure processing on quality characteristics of grass-fed cow's milk. Ann Anim Resour Sci 26: 29-41. https://doi.org/10.12718/AARS.2015.26.1.29
  9. Goyal A, Sharma V, Upadhyay N, Sihag M, Kaushik R. 2013. High pressure processing and its impact on milk proteins: a review. Res Rev J Dairy Sci Technol 2: 12-20.
  10. Gola S, Mutti P, Manganelli E, Squarcina N, Rovere P. 2000. Behaviour of E. coli O157:H7 strains in model system and in raw meat by HPP: microbial and technological aspects. High Pressure Res 19: 91-97. https://doi.org/10.1080/08957950008202541
  11. Gao YL, Wang YX, Jiang HH. 2005. Effect of high pressure and mild heat on Staphylococcus aureus in milk using response surface methodology. Process Biochem 40: 1849-1854. https://doi.org/10.1016/j.procbio.2004.06.053
  12. Saldo J, Sendra E, Guamis B. 2000. High hydrostatic pressure for accelerating ripening of goat's milk cheese: proteolysis and texture. J Food Sci 65: 636-640. https://doi.org/10.1111/j.1365-2621.2000.tb16064.x
  13. Malone AS, Wick C, Shellhammer TH, Courtney PD. 2003. High pressure effects on proteolytic and glycolytic enzymes involved in cheese manufacturing. J Dairy Sci 86: 1139-1146. https://doi.org/10.3168/jds.S0022-0302(03)73696-0
  14. Okpala COR, Piggott JR, Schaschke CJ. 2010. Influence of high-pressure processing (HPP) on physico-chemical properties of fresh cheese. Innovative Food Sci Emerging Technol 11: 61-67. https://doi.org/10.1016/j.ifset.2009.10.003
  15. Sandra S, Stanford MA, Goddik LM. 2004. The use of high-pressure processing in the production of Queso Fresco cheese. J Food Sci 69: FEP153-FEP158.
  16. Keogh MK, O'Kennedy BT. 1998. Rheology of stirred yogurt as affected by added milk fat, protein and hydrocolloids. J Food Sci 63: 108-112. https://doi.org/10.1111/j.1365-2621.1998.tb15687.x
  17. Patrignani F, Burns P, Serrazanetti D, Vinderola G, Reinheimer J, Lanciotti R, Guerzoni ME. 2009. Suitability of high pressure-homogenized milk for the production of probiotic fermented milk containing Lactobacillus paracasei and Lactobacillus acidophilus. J Dairy Res 76: 74-82. https://doi.org/10.1017/S0022029908003828
  18. Davis JG. 1970. Laboratory control of yogurt. Dairy Ind 35: 139-144.
  19. Kroger M, Weaver JC. 1973. Confusion about yogurt-compositional and otherwise. J Milk Food Technol 36: 388-391. https://doi.org/10.4315/0022-2747-36.7.388
  20. Chambers JV. 1979. Culture and processing techniques important to the manufacture of good quality yoghurt. Cult Dairy Prod J 14: 28-33.
  21. Duitschaever CL, Arnott DR, Bullock DH. 1972. Quality evaluation of yogurt produced commercially in Ontario. J Milk Food Technol 35: 173-175. https://doi.org/10.4315/0022-2747-35.3.173
  22. Udabage P, Augustin MA, Versteeg C, Puvanenthiran A, Yoo JA, Allen N, McKinnon I, Smiddy M, Kelly AL. 2010. Properties of low-fat stirred yoghurts made from high-pressure-processed skim milk. Innov Food Sci Emerg Technol 11: 32-38. https://doi.org/10.1016/j.ifset.2009.08.001
  23. Johnston DE, Murphy RJ, Birksl AW. 1994. Stirred-style yoghurt-type product prepared from pressure treated skimmilk. High Pressure Res 12: 215-219. https://doi.org/10.1080/08957959408201660
  24. Lim YS, Lee SK. 2009. Characteristics of exopolysaccharide produced in goat milk yogurt cultured with Streptococcus thermophilus LFG isolated from Kefir. Korean J Food Sci Ani Resour 29: 143-150. https://doi.org/10.5851/kosfa.2009.29.2.143
  25. Loveday SM, Sarkar A, Singh H. 2013. Innovative yoghurts: novel processing technologies for improving acid milk gel texture. Trends Food Sci Technol 33: 5-20. https://doi.org/10.1016/j.tifs.2013.06.007

Cited by

  1. Investigation of the Lactic Acid Bacteria Content of Probiotic and Lactic Acid Bacteria Products: a Study on Changes in the Preservation Method of Probiotic Products vol.33, pp.6, 2018, https://doi.org/10.13103/JFHS.2018.33.6.474
  2. 초고압 기술이 자작나무 수액의 저장성 향상에 미치는 영향 vol.24, pp.3, 2016, https://doi.org/10.11002/kjfp.2017.24.3.343