References
- Adastra, K. L., M. M. Chi, J. K. Riley, and K. H. Moley. 2011. A differential autophagic response to hyperglycemia in the developing murine embryo. Reproduction 141:607-615. https://doi.org/10.1530/REP-10-0265
- Bang, S., H. Shin, H. Song, C. S. Suh, and H. J. Lim. 2014. Autophagic activation in vitrified-warmed mouse oocytes. Reproduction 148:11-19. https://doi.org/10.1530/REP-14-0036
- Boya, P., F. Reggiori, and P. Codogno. 2013. Emerging regulation and functions of autophagy. Nat. Cell. Biol. 15:713-720. https://doi.org/10.1038/ncb2788
- Castedo, M., K. F. Ferri, and G. Kroemer. 2002. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell. Death. Differ. 9:99-100. https://doi.org/10.1038/sj.cdd.4400978
- Cha, S. K., B. Y. Kim, M. K. Kim, Y. S. Kim, W. S. Lee, T. K. Yoon, and D. R. Lee. 2011. Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin. Exp. Reprod. Med. 38:24-30. https://doi.org/10.5653/cerm.2011.38.1.24
- Chiang, G. G. and R. T. Abraham. 2005. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J. Biol. Chem. 280:25485-25490. https://doi.org/10.1074/jbc.M501707200
- Choi, S., H. Shin, H. Song, and H. J. Lim. 2014. Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. J. Endocrinol. 221:39-50. https://doi.org/10.1530/JOE-13-0449
- Gualtieri, R., V. Mollo, V. Barbato, I. Fiorentino, M. Iaccarino, and R. Talevi. 2011. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum. Reprod. 26:2452-2460. https://doi.org/10.1093/humrep/der210
- Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909. https://doi.org/10.1126/science.1715094
- Jo, J. W., B. C. Jee, J. R. Lee, and C. S. Suh. 2011. Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96:1239-1245. https://doi.org/10.1016/j.fertnstert.2011.08.023
- Kapahi, P., D. Chen, A. N. Rogers, S. D. Katewa, P. W. Li, and E. L. Thomas, and L. Kockel. 2010. With TOR, less is more: A key role for the conserved nutrient-sensing TOR pathway in aging. Cell. Metab. 11:453-465. https://doi.org/10.1016/j.cmet.2010.05.001
- Klionsky, D. J., F. C. Abdalla, H. Abeliovich, R. T. Abraham, A. Acevedo-Arozena, and K. Adeli, et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445-544. https://doi.org/10.4161/auto.19496
- Kogasaka, Y., Y. Hoshino, Y. Hiradate, K. Tanemura, and E. Sato. 2013. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol. Reprod. Dev. 80:334-48. https://doi.org/10.1002/mrd.22166
- Lee, J. E., H. A. Oh, H. Song, J. H. Jun, C. R. Roh, H. Xie, S. K. Dey, and H. J. Lim. 2011a. Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152:2067-2075. https://doi.org/10.1210/en.2010-1456
- Lee, S. E., K. C. Hwang, S. C. Sun, Y. N. Xu, and N. H. Kim. 2011b. Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev. 78:498-509. https://doi.org/10.1002/mrd.21331
- Lee, S. E., S. C. Sun, H. Y. Choi, S. J. Uhm, and N. H. Kim. 2012. mTOR is required for asymmetric division through small GTPases in mouse oocytes. Mol. Reprod. Dev. 79:356-366. https://doi.org/10.1002/mrd.22035
- Lim, H. J. and H. Song. 2014. Evolving tales of autophagy in early reproductive events. Int. J. Dev. Biol. 58:183-187. https://doi.org/10.1387/ijdb.130337hl
- Martinez-Burgos, M., L. Herrero, D. Megias, R. Salvanes, M. C. Montoya, A. C. Cobo, and Juan A. Garcia-Velasco. 2011. Vitrification versus slow freezing of oocytes: Effects on morphologic appearance, meiotic spindle configuration, and DNA damage. Fertil. Steril. 95:374-377. https://doi.org/10.1016/j.fertnstert.2010.07.1089
- Mayer, S., C. Wrenzycki, and W. Tomek. 2014. Inactivation of mTor arrests bovine oocytes in the metaphase-I stage, despite reversible inhibition of 4E-BP1 phosphorylation. Mol. Reprod. Dev. 81:363-375. https://doi.org/10.1002/mrd.22305
- Mizushima, N., B. Levine, A. M. Cuervo, and D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-1075. https://doi.org/10.1038/nature06639
- Mizushima, N., A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell. 15:1101-1111. https://doi.org/10.1091/mbc.e03-09-0704
- Neufeld, T. P. 2010. TOR-dependent control of autophagy: Biting the hand that feeds. Curr. Opin. Cell. Biol. 22:157-168. https://doi.org/10.1016/j.ceb.2009.11.005
- Sancak, Y., T. R. Peterson, Y. D. Shaul, R. A. Lindquist, C. C. Thoreen, L. Bar-Peled, and David M. Sabatini. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501. https://doi.org/10.1126/science.1157535
- Saragusty, J. and A. Arav. 2011. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1-19. https://doi.org/10.1530/REP-10-0236
- Singh, R. and A. M. Cuervo. 2011. Autophagy in the cellular energetic balance. Cell. Metab. 13:495-504. https://doi.org/10.1016/j.cmet.2011.04.004
- Song, B. S., J. S. Kim, Y. H. Kim, B. W. Sim, S. B. Yoon, and J. J. Cha, S.-A Choi, H.-J. Yang, S.-E. Mun, Y.-H. Park, K.-J. Jeong, J.-W. Huh, S.-R. Lee, S.-H. Kim, S.-U. Kim, and K.-T. Chang. 2014. Induction of autophagy during in vitro maturation improves the nuclear and cytoplasmic maturation of porcine oocytes. Reprod. Fertil. Dev. 26:974-981. https://doi.org/10.1071/RD13106
- Susor, A., D. Jansova, R. Cerna, A. Danylevska, M. Anger, T. Toralova, R. Malik, J. Supolikova, M. S. Cook, J. S. Oh, and M. Kubelka. 2015. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat. Commun. 6:6078. https://doi.org/10.1038/ncomms7078
- Tsukamoto, S., T. Hara, A. Yamamoto, S. Kito, N. Minami, T. Kubota, K. Sato, and T. Kokubo. 2014. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci. Rep. 4:4533.
- Tsukamoto, S., A. Kuma, M. Murakami, C. Kishi, A. Yamamoto, and N. Mizushima. 2008. Autophagy is essential for preimplantation development of mouse embryos. Science 321:117-20. https://doi.org/10.1126/science.1154822
- Yamamoto, A., N. Mizushima, and S. Tsukamoto. 2014. Fertilization-induced autophagy in mouse embryos is independent of mTORC1. Biol. Reprod. 91:7. https://doi.org/10.1095/biolreprod.113.115816
- Yang, Z. and D. J. Klionsky. 2010. Eaten alive: A history of macroautophagy. Nat. Cell. Biol. 12:814-822. https://doi.org/10.1038/ncb0910-814
- Yu, L., C. K. McPhee, L. Zheng, G. A. Mardones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942-946. https://doi.org/10.1038/nature09076
Cited by
- Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos vol.9, pp.5, 2018, https://doi.org/10.3390/genes9050265
- Autophagy in hypoxic ovary vol.76, pp.17, 2016, https://doi.org/10.1007/s00018-019-03122-4
- Autophagy in Female Fertility: A Role in Oxidative Stress and Aging vol.32, pp.8, 2020, https://doi.org/10.1089/ars.2019.7986
- Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126313