DOI QR코드

DOI QR Code

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Received : 2015.10.30
  • Accepted : 2015.12.02
  • Published : 2016.07.01

Abstract

Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Keywords

References

  1. Abraham, E. (2003) Nuclear factor-${\kappa}B$ and its role in sepsis-associated organ failure. J. Infect. Dis. 187 Suppl 2, S364-S369. https://doi.org/10.1086/374750
  2. Baldwin, A. S. Jr. (1996) The NF-${\kappa}B$ and $I{\kappa}B$ proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  3. Beg, A. A., Finco, T. S., Nantermet, P. V. and Baldwin, A. S. Jr. (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of $I{\kappa}B{\alpha}$: a mechanism for NF-${\kappa}B$ activation. Mol. Cell. Biol. 13, 3301-3310. https://doi.org/10.1128/MCB.13.6.3301
  4. Bergt, S., Wagner, N. M., Heidrich, M., Butschkau, A., Noldge-Schomburg, G. E., Vollmar, B. and Roesner, J. P. (2013) Hydrocortisone reduces the beneficial effects of toll-like receptor 2 deficiency on survival in a mouse model of polymicrobial sepsis. Shock 40, 414-419. https://doi.org/10.1097/SHK.0000000000000029
  5. Bone, R. C. (1991) The pathogenesis of sepsis. Ann. Intern. Med. 115, 457-469. https://doi.org/10.7326/0003-4819-115-6-457
  6. Chakravortty, D., Koide, N., Kato, Y., Sugiyama, T., Mu, M. M., Yoshida, T. and Yokochi, T. (2000) The inhibitory action of butyrate on lipopolysaccharide-induced nitric oxide production in RAW 264.7 murine macrophage cells. J. Endotoxin Res. 6, 243-247. https://doi.org/10.1177/09680519000060030501
  7. Chaudry, I. H., Wichterman, K. A. and Baue, A. E. (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85, 205-211.
  8. Chen, L. F., Mu, Y. and Greene, W. C. (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-${\kappa}B$. EMBOJ. 21, 6539-6548. https://doi.org/10.1093/emboj/cdf660
  9. Chen, Y. R., Wang, X., Templeton, D., Davis, R. J. and Tan, T. H. (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and ${\gamma}$ radiation. J. Biol. Chem. 271, 31929-31936. https://doi.org/10.1074/jbc.271.50.31929
  10. Choi, J. H., Oh, S. W., Kang, M. S., Kwon, H. J., Oh, G. T. and Kim, D. Y. (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin. Exp. Allergy 35, 89-96. https://doi.org/10.1111/j.1365-2222.2004.02006.x
  11. Ehrentraut, S., Lohner, R., Schwederski, M., Ehrentraut, H., Boehm, O., Noga, S., Langhoff, P., Baumgarten, G., Meyer, R. and Knuefermann, P. (2011) In vivo Toll-like receptor 4 antagonism restores cardiac function during endotoxemia. Shock 36, 613-620. https://doi.org/10.1097/SHK.0b013e318235805f
  12. Finkelstein, R. A., Li, Y., Liu, B., Shuja, F., Fukudome, E., Velmahos, G. C., deMoya M. and Alam, H. B. (2010) Treatment with histone deacetylase inhibitor attenuates MAP kinase mediated liver injury in a lethal model of septic shock. J. Surg. Res. 163, 146-154. https://doi.org/10.1016/j.jss.2010.04.024
  13. Hebert, P. C., Drummond, A. J., Singer, J., Bernard, G. R. and Russell, J. A. (1993) A simple multiple system organ failure scoring system predicts mortality of patients who have sepsis syndrome. Chest 104, 230-235. https://doi.org/10.1378/chest.104.1.230
  14. Johnstone, R. W. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287-299. https://doi.org/10.1038/nrd772
  15. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. and Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122. https://doi.org/10.1016/S1074-7613(00)80086-2
  16. Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., Moon, E. J., Kim, H. S., Lee, S. K., Chung, H. Y., Kim, C. W. and Kim, K. W. (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat. Med. 7, 437-443. https://doi.org/10.1038/86507
  17. Lagu, T., Rothberg, M. B., Shieh, M. S., Pekow, P. S., Steingrub, J. S. and Lindenauer, P. K. (2012) Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit. Care Med. 40, 754-761. https://doi.org/10.1097/CCM.0b013e318232db65
  18. Li, Y. and Alam, H. B. (2011) Modulation of acetylation: creating a prosurvival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock. J. Biomed. Biotechnol. 2011, 523481.
  19. Luhrs, H., Gerke, T., Schauber, J., Dusel, G., Melcher, R., Scheppach, W. and Menzel, T. (2001) Cytokine-activated degradation of inhibitory ${\kappa}B$ protein a is inhibited by the short-chain fatty acid butyrate. Int. J. Colorectal Dis. 16, 195-201. https://doi.org/10.1007/s003840100295
  20. Mittal, R., Peak-Chew, S. Y. and McMahon, H. T. (2006) Acetylation of MEK2 and $I{\kappa}B$ kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. U.S.A. 103, 18574-18579. https://doi.org/10.1073/pnas.0608995103
  21. Nasu, Y., Nishida, K., Miyazawa, S., Komiyama, T., Kadota, Y., Abe, N., Yoshida, A., Hirohata, S., Ohtsuka, A. and Ozaki, T. (2008) Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr. Cartil. 16, 723-732. https://doi.org/10.1016/j.joca.2007.10.014
  22. Nesseler, N., Launey, Y., Aninat, C., Morel, F., Malledant, Y. and Seguin, P. (2012) Clinical review: The liver in sepsis. Crit. Care 16, 235. https://doi.org/10.1186/cc11381
  23. Pan, L. N., Lu, J. and Huang, B. (2007) HDAC inhibitors: a potential new category of anti-tumor agents. Cell. Mol. Immunol. 4, 337-343.
  24. Riedemann, N. C., Guo, R. F. and Ward, P. A. (2003) Novel strategies for the treatment of sepsis. Nat. Med. 9, 517-524. https://doi.org/10.1038/nm0503-517
  25. Roger, T., Lugrin, J., Le Roy, D., Goy, G., Mombelli, M., Koessler, T., Ding, X. C., Chanson, A. L., Reymond, M. K., Miconnet, I., Schrenzel, J., Francois, P. and Calandra, T. (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117, 1205-1217. https://doi.org/10.1182/blood-2010-05-284711
  26. Sha, T., Iizawa, Y. and Ii, M. (2011) Combination of imipenem and TAK-242, a Toll-like receptor 4 signal transduction inhibitor, improves survival in a murine model of polymicrobial sepsis. Shock 35, 205-209. https://doi.org/10.1097/SHK.0b013e3181f48942
  27. Singhal, S., Alulen, M. W., McAnnally, J. R., Smith, K. S., Donnelly, J. P. and Wang, H. E. (2013) National estimates of emergency department visits for pediatric severe sepsis in the United States. PeerJ 1, e79. https://doi.org/10.7717/peerj.79
  28. Takala, A., Nupponen, I., Kylanpaa-Back, M. L. and Repo, H. (2002) Markers of inflammation in sepsis. Ann. Med. 34, 614-623. https://doi.org/10.1080/078538902321117841
  29. Takashima, K., Matsunaga, N., Yoshimatsu, M., Hazeki, K., Kaisho, T., Uekata, M., Hazeki, O., Akira, S., Iizawa, Y. and Ii M. (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br. J. Pharmacol. 157, 1250-1262. https://doi.org/10.1111/j.1476-5381.2009.00297.x
  30. Tong, X., Yin, L. and Giardina, C. (2004) Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem. Biophys. Res. Commun. 317, 463-471. https://doi.org/10.1016/j.bbrc.2004.03.066
  31. Toscano, M. G., Ganea, D. and Gamero, A. M. (2011) Cecal ligation puncture procedure. J. Vis. Exp. 2860.
  32. Williams, D. L., Ha, T., Li, C., Kalbfleisch, J. H., Schweitzer, J., Vogt, W. and Browder, I. W. (2003) Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Crit. Care Med. 31, 1808-1818. https://doi.org/10.1097/01.CCM.0000069343.27691.F3
  33. Wu, J. and Grunstein, M. (2000) 25 years after the nucleosome model:chromatin modifications. Trends Biochem. Sci. 25, 619-623. https://doi.org/10.1016/S0968-0004(00)01718-7
  34. Zhang, L., Jin, S., Wang, C., Jiang, R. and Wan, J. (2010) Histone deacetylase inhibitors attenuate acute lung injury during cecal ligation and puncture-induced polymicrobial sepsis. World J. Surg. 34, 1676-1683. https://doi.org/10.1007/s00268-010-0493-5
  35. Zhang, L., Wan, J., Jiang, R., Wang, W., Deng, H., Shen, Y., Zheng, W. and Wang, Y. (2009) Protective effects of trichostatin A on liver injury in septic mice. Hepatol. Res. 39, 931-938. https://doi.org/10.1111/j.1872-034X.2009.00521.x
  36. Zhao, T., Li, Y., Liu, B., Liu, Z., Chong, W., Duan, X., Deperalta, D. K., Velmahos, G. C. and Alam, H. B. (2013) Novel pharmacologic treatment attenuates septic shock and improves long-term survival. Surgery 154, 206-213. https://doi.org/10.1016/j.surg.2013.04.003

Cited by

  1. The NF-κB inhibitor celastrol attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats vol.50, 2017, https://doi.org/10.1016/j.etap.2017.02.002
  2. The lipoxin A4 agonist BML-111 attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats vol.390, pp.4, 2017, https://doi.org/10.1007/s00210-016-1335-2
  3. Potential Immunotherapeutics for Immunosuppression in Sepsis vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2017.193
  4. -induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B vol.96, pp.6, 2018, https://doi.org/10.1139/cjpp-2017-0728
  5. Toll-Like Receptors -2, -3, -4 and -7 Expression Patterns in the Liver of a CLP-Induced Sepsis Mouse Model pp.1521-0553, 2020, https://doi.org/10.1080/08941939.2018.1476630
  6. Modulations of Histone Deacetylase 2 Offer a Protective Effect through the Mitochondrial Apoptosis Pathway in Acute Liver Failure vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/8173016
  7. Epigenetic and metabolic programming of innate immunity in sepsis vol.25, pp.5, 2016, https://doi.org/10.1177/1753425919842320
  8. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TN vol.83, pp.4, 2020, https://doi.org/10.1021/acs.jnatprod.9b01116
  9. Menstrual blood‐derived mesenchymal stem cells attenuate inflammation and improve the mortality of acute liver failure combining with A2AR agonist in mice vol.36, pp.9, 2021, https://doi.org/10.1111/jgh.15493