DOI QR코드

DOI QR Code

Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji (Department of Bioresource Sciences, Andong National University) ;
  • Park, Gwang Hun (Department of Bioresource Sciences, Andong National University) ;
  • Jeong, Jin Boo (Department of Bioresource Sciences, Andong National University)
  • Received : 2015.09.23
  • Accepted : 2015.12.11
  • Published : 2016.07.01

Abstract

Silymarin from milk thistle (Silybum marianum) has been reported to show an anti-cancer activity. In previous study, we reported that silymarin induces cyclin D1 proteasomal degradation through NF-${\kappa}B$-mediated threonine-286 phosphorylation. However, mechanism for the inhibition of Wnt signaling by silymarin still remains unanswered. Thus, we investigated whether silymarin affects Wnt signaling in human colorectal cancer cells to elucidate the additional anti-cancer mechanism of silymarin. Transient transfection with a TOP and FOP FLASH luciferase construct indicated that silymarin suppressed the transcriptional activity of ${\beta}$-catenin/TCF. Silymarin treatment resulted in a decrease of intracellular ${\beta}$-catenin protein but not mRNA. The inhibition of proteasome by MG132 and $GSK3{\beta}$ inhibition by SB216763 blocked silymarin-mediated downregulation of ${\beta}$-catenin. In addition, silymarin increased phosphorylation of ${\beta}$-catenin and a point mutation of S33Y attenuated silymarin-mediated ${\beta}$-catenin downregulation. In addition, silymarin decreased TCF4 and increased Axin expression in both protein and mRNA level. From these results, we suggest that silymarin-mediated downregulation of ${\beta}$-catenin and TCF4 may result in the inhibition of Wnt signaling in human colorectal cancer cells.

Keywords

References

  1. Abenavoli, L., Capasso, R., Milic, N. and Capasso, F. (2010) Milk thistle in liver diseases: past, present, future. Phytother. Res. 24, 1423-1432. https://doi.org/10.1002/ptr.3207
  2. Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) ${\beta}$-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797-3804. https://doi.org/10.1093/emboj/16.13.3797
  3. Ahnen, D. J., Wade, S. W., Jones, W. F., Sifri, R., Mendoza Silveiras, J., Greenamyer, J., Guiffre, S., Axilbund, J., Spiegel, A. and You, Y. N. (2014) The increasing incidence of young-onset colorectal cancer: a call to action. Mayo Clin. Proc. 89, 216-224. https://doi.org/10.1016/j.mayocp.2013.09.006
  4. Amado, N. G., Fonseca, B. F., Cerqueira, D. M., Neto, V. M. and Abreu, J. G. (2011) Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life Sci. 89, 545-554. https://doi.org/10.1016/j.lfs.2011.05.003
  5. Anderson, E. C., Hessman, C., Levin, T. G., Monroe, M. M. and Wong, M. H. (2011) The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel) 3, 319-339. https://doi.org/10.3390/cancers3010319
  6. Behrens, J., von Kries, J. P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R. and Birchmeier, W. (1996) Functional interaction of bcatenin with the transcription factor LEF-1. Nature 382, 638-642. https://doi.org/10.1038/382638a0
  7. Bos, J. L., Fearon, E. R., Hamilton, S. R., Verlaan-de Vries, M., van Boom, J. H., van der Eb, A. J. and Vogelstein, B. (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293-297. https://doi.org/10.1038/327293a0
  8. Cassileth, B. R. and Deng, G. (2004) Complementary and alternative therapies for cancer. Oncologist 9, 80-89. https://doi.org/10.1634/theoncologist.9-1-80
  9. Chastek, B., Kulakodlu, M., Valluri, S. and Seal, B. (2013) Impact of metastatic colorectal cancer stage and number of treatment courses on patient health care costs and utilization. Postgrad. Med. 125, 73-82.
  10. Cufi, S., Bonavia, R., Vazquez-Martin, A., Corominas-Faja, B., Oliveras-Ferraros, C., Cuyas, E., Martin-Castillo, B., Barrajon-Catalan, E., Visa, J., Segura-Carretero, A., Bosch-Barrera, J., Joven, J., Micol, V. and Menendez, J. A. (2013) Silibinin meglumine, a watersoluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. Food Chem. Toxicol. 60, 360-368. https://doi.org/10.1016/j.fct.2013.07.063
  11. Eo, H. J., Park, G. H., Song, H. M., Lee, J. W., Kim, M. K., Lee, M. H., Lee, J. R., Koo, J. S. and Jeong, J. B. (2015) Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells. Int. Immunopharmacol. 24, 1-6. https://doi.org/10.1016/j.intimp.2014.11.009
  12. Espada, J., Calvo, M. B., Diaz-Prado, S. and Medina, V. (2009) Wnt signalling and cancer stem cells. Clin. Transl. Oncol. 11, 411-427. https://doi.org/10.1007/s12094-009-0380-4
  13. Fearon, E. R., Hamilton, S. R. and Vogelstein, B. (1987) Clonal analysis of human colorectal tumors. Science 238, 193-197. https://doi.org/10.1126/science.2889267
  14. Fodde, R., Smits, R. and Clevers, H. (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer 1, 55-67. https://doi.org/10.1038/35094067
  15. Hawcroft, G., D'Amico, M., Albanese, C., Markham, A. F., Pestell, R. G. and Hull, M. A. (2002) Indomethacin induces differential expression of ${\beta}$-catenin, ${\gamma}$-catenin and T-cell factor target genes in human colorectal cancer cells. Carcinogenesis 23, 107-114. https://doi.org/10.1093/carcin/23.1.107
  16. Herbst, A. and Kolligs, F. T. (2007) Wnt signaling as a therapeutic target for cancer. Methods Mol. Biol. 361, 63-91.
  17. Kaur, M., Velmurugan, B., Tyagi, A., Agarwal, C., Singh, R. P. and Agarwal, R. (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through downregulation of ${\beta}$-catenin-dependent signaling. Neoplasia 12, 415-424. https://doi.org/10.1593/neo.10188
  18. Kwon, I. K., Wang, R., Thangaraju, M., Shuang, H., Liu, K., Dashwood, R., Dulin, N., Ganapathy, V. and Browning, D. D. (2010) PKG inhibits TCF signaling in colon cancer cells by blocking ${\beta}$-catenin expression and activating FOXO4. Oncogene 29, 3423-3434. https://doi.org/10.1038/onc.2010.91
  19. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X. and He, X. (2002). Control of ${\beta}$-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847. https://doi.org/10.1016/S0092-8674(02)00685-2
  20. Lu, W., Lin, C., King, T. D., Chen, H., Reynolds, R. C. and Li, Y. (2012) Silibinin inhibits Wnt/${\beta}$-catenin signaling by suppressing Wnt coreceptor LRP6 expression in human prostate and breast cancer cells. Cell. Signal. 24, 2291-2296. https://doi.org/10.1016/j.cellsig.2012.07.009
  21. Luu, H. H., Zhang, R., Haydon, R. C., Rayburn, E., Kang, Q., Si, W., Park, J. K., Wang, H., Peng, Y., Jiang, W. and He, T. C. (2004) Wnt/${\beta}$-catenin signaling pathway as a novel cancer drug target. Curr. Cancer Drug Targets 4, 653-671. https://doi.org/10.2174/1568009043332709
  22. Mereish, K. A., Bunner, D. L., Ragland, D. R. and Creasia, D. A. (1991) Protection against microcystin-LR-induced hepatotoxicity by Silymarin:biochemistry, histopathology, and lethality. Pharm. Res. 8, 273-277. https://doi.org/10.1023/A:1015868809990
  23. Narayan, S. (2004) Curcumin, a multi-functional chemopreventive agent, blocks growth of colon cancer cells by targeting ${\beta}$-cateninmediated transactivation and cell-cell adhesion pathways. J. Mol. Histol. 35, 301-307.
  24. Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. (2010) Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241. https://doi.org/10.1016/j.tox.2009.10.010
  25. Novo, M. C., Osugui, L., dos Reis, V. O., Longo-Maugeri, I. M., Mariano, M. and Popi, A. F. (2015) Blockage of Wnt/${\beta}$-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology 220, 60-67. https://doi.org/10.1016/j.imbio.2014.09.001
  26. Polakis, P. (2012) Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4, a008052.
  27. Ramasamy, K. and Agarwal, R. (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett. 269, 352-362. https://doi.org/10.1016/j.canlet.2008.03.053
  28. Reya, T. and Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature 434, 843-850. https://doi.org/10.1038/nature03319
  29. Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. CA Cancer J. Clin. 64, 9-29. https://doi.org/10.3322/caac.21208
  30. Sparks, A. B., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Mutational analysis of the APC/${\beta}$-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130-1134.
  31. Tetsu, O. and McCormick, F. (1999) ${\beta}$-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426. https://doi.org/10.1038/18884
  32. Vaid, M., Prasad, R., Sun, Q. and Katiyar, S. K. (2011) Silymarin targets ${\beta}$-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS One 6, e23000. https://doi.org/10.1371/journal.pone.0023000
  33. Wang, D., Wise, M. L., Li, F. and Dey, M. (2012) Phytochemicals attenuating aberrant activation of ${\beta}$-catenin in cancer cells. PLoS One 7, e50508. https://doi.org/10.1371/journal.pone.0050508
  34. Xie, J., Xiang, D. B., Wang, H., Zhao, C., Chen, J., Xiong, F., Li, T. Y. and Wang, X. L. (2012) Inhibition of Tcf-4 induces apoptosis and enhances chemosensitivity of colon cancer cells. PLoS One 7, e45617. https://doi.org/10.1371/journal.pone.0045617
  35. Yang, L. H., Xu, H. T., Han, Y., Li, Q. C., Liu, Y., Zhao, Y., Yang, Z. Q., Dong, Q. Z., Miao, Y., Dai, S. D. and Wang, E. H. (2010) Axin downregulates TCF-4 transcription via ${\beta}$-catenin, but not p53, and inhibits the proliferation and invasion of lung cancer cells. Mol. Cancer 9, 25. https://doi.org/10.1186/1476-4598-9-25
  36. Zi, X., Feyes, D. K. and Agarwa, R. (1998) Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDAMB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clin. Cancer Res. 4, 1055-1064.

Cited by

  1. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells 2018, https://doi.org/10.1007/s11010-017-3178-7
  2. HM015k, a Novel Silybin Derivative, Multi-Targets Metastatic Ovarian Cancer Cells and Is Safe in Zebrafish Toxicity Studies vol.8, 2017, https://doi.org/10.3389/fphar.2017.00498
  3. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00520
  4. microRNA-544 promoted human osteosarcoma cell proliferation by downregulating AXIN2 expression vol.15, pp.5, 2016, https://doi.org/10.3892/ol.2018.8218
  5. The Chemical Constituents and Pharmacological Actions of Silybum Marianum vol.15, pp.5, 2016, https://doi.org/10.2174/1573401314666180327155745
  6. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer vol.142, pp.None, 2016, https://doi.org/10.1016/j.biopha.2021.112024
  7. Advances in targeting the WNT/β-catenin signaling pathway in cancer vol.27, pp.1, 2022, https://doi.org/10.1016/j.drudis.2021.07.007