DOI QR코드

DOI QR Code

Synthesis, Structure and Magnetization Behaviors of MnBi/Fe3B/Nd2Fe14B Nanocomposite alloy

  • Yang, Y. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Wu, Q. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Hu, Y.C. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Zhang, P.Y. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province) ;
  • Ge, H.L. (China Jiliang University, Magnetism Key Laboratory of Zhejiang Province)
  • Received : 2015.12.28
  • Accepted : 2016.03.24
  • Published : 2016.06.30

Abstract

Microstructure and magnetization behaviors of $MnBi/Fe_3B/Nd2_Fe_{14}B$ nanocomposite alloy have been investigated. It was found that the coercivity increased firstly and then decreased, and saturation magnetization decreased with the additon of MnBi alloy. The addition of 40 wt.% MnBi powder enhanced the coercivity from 192.8 kA/m to 311.2 kA/m. The ${\delta}M$ and D(H)-H plots suggested the occurrence of a stronger exchange-coupling occurring between the hard and soft magnetic phase for this sample. The dependence of coercivity with temperature was discussed in 40 wt.% $Mn_{55}Bi_{45}$/ 60 wt.% $Nd_{4.5}Fe_{76.5}Nb_{0.5}B_{18.5}$ alloy powder, and a positive temperature coefficient was founded from 298 K to 350 K.

Keywords

References

  1. R. Coehoorn, D. B. de Mooij, J. P. W. B. Duchateau, and K. H. J. Buschow, J. de Phys. 49, 669 (1988).
  2. S. Hirosawa, Y. Shigemoto, T. Miyoshi, D. Shindo, Y. Park, Y. Gao, and H. Kanekiyo, Scripta. Mater. 48, 839 (2003). https://doi.org/10.1016/S1359-6462(02)00620-6
  3. S. Cao, M. Yue, and Y. X. Yang, J. Appl. Phys. 109, 07A740 (2011). https://doi.org/10.1063/1.3564966
  4. J. B. Yang, Y. B. Yang, and X. G. Chen, Appl. Phys. Lett. 99, 082505 (2011). https://doi.org/10.1063/1.3630001
  5. Y. B. Yang, X. G. Chen, S. Guo, A. R. Yanb, Q. Z. Huangc, M. M. Wud, D. F. Chend, Y. C. Yanga, and J. B. Yanga, J. Magn. Magn. Mater. 330, 106, (2013). https://doi.org/10.1016/j.jmmm.2012.10.046
  6. J. Cui, J. P. Choi, G. Li, E. Polikarpov, and J. Darsell, J. Appl. Phys. 115, 17A743 (2014). https://doi.org/10.1063/1.4867230
  7. M. Sagawa, S. Fujimori, and M. Togawa, J. Appl. Phys. 55, 2083 (1984). https://doi.org/10.1063/1.333572
  8. E. P. Wohlfarth, J. Appl. Phys. 29, 595 (1958).
  9. H. W. Zhang, C. B. Rong, X. B. Du, J. Zhang, S. Y. Zhang, and B. G. Shen, Appl. Phys. Lett. 82, 4098 (2003). https://doi.org/10.1063/1.1576291
  10. P. E. Kelly, K. O. Grady, and P. I. Mayo, IEEE Trans. Magn. 25, 3881 (1989). https://doi.org/10.1109/20.42466
  11. M. X. Pan, P. Y. Zhang, H. L. Ge, N. J. Yu, and W. Qiong, J. Magn. Magn. Mater. 361, 219 (2014). https://doi.org/10.1016/j.jmmm.2014.02.044
  12. J. Zhang, Y. K. Takahashi, R. Gopalan, and K. Hono, Appl. Phys. Lett. 86, 122509 (2005). https://doi.org/10.1063/1.1889238
  13. D. Goll, M. Seeger, H. Kronmuller, and J. Bauer, J. Magn. Magn. Mater. 185, 49 (1998). https://doi.org/10.1016/S0304-8853(98)00030-4