DOI QR코드

DOI QR Code

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
  • Received : 2016.03.26
  • Accepted : 2016.04.26
  • Published : 2016.06.30

Abstract

Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

Keywords

References

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996). https://doi.org/10.1103/PhysRevLett.76.4773
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory and Techniques, 47, 2075 (1999). https://doi.org/10.1109/22.798002
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.4184
  4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). https://doi.org/10.1126/science.1058847
  5. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, Opt. Express 15, 16651 (2007). https://doi.org/10.1364/OE.15.016651
  6. N. T. Tung, V. T. T. Thuy, J. W. Park, J. Y. Rhee, and Y. Lee, J. Appl. Phys. 107, 023530 (2010). https://doi.org/10.1063/1.3298505
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008). https://doi.org/10.1103/PhysRevLett.100.207402
  8. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002). https://doi.org/10.1103/PhysRevB.65.195104
  9. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Appl. Phys. Lett. 77, 2246 (2000). https://doi.org/10.1063/1.1314884
  10. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005). https://doi.org/10.1103/PhysRevE.71.036617
  11. A. Ourir and H. H. Ouslimani, Appl. Phys. Lett. 98, 113505 (2011). https://doi.org/10.1063/1.3565160
  12. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Opt. Lett. 31, 3620 (2006). https://doi.org/10.1364/OL.31.003620
  13. B. Kante, S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, Phys. Rev. B 79, 075121 (2009). https://doi.org/10.1103/PhysRevB.79.075121
  14. A. Ourir1 and H. H. Ouslimani, Appl. Phys. Lett. 98, 113505 (2011). https://doi.org/10.1063/1.3565160
  15. Nanostructured Metamaterials - Exchange between experts in electromagnetics and material science, edited by A. F. de Baas, Luxembourg: Publications Office of the European Union (2010) pp. 34-36.