References
- Ayatollahi, M.R. and Aliha, M.R. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech. 75(16), 4631-4641. https://doi.org/10.1016/j.engfracmech.2008.06.018
- Ayatollahi,. M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min. Sci., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
- Blumel, M. (2000), "Improved procedures for laboratory rock testing", Proceedings of the EUROCK 2000 Symposium, Aachen, Essen, 573-578.
- Castro-Montero, A., Jia, Z. and Shah, S.P. (1995), "Evaluation of damage in brazilian test using holographic interferometry", ACI Mater. J., 92(3), 268-275.
- Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Trans. Nonferrous Met. Soc. China., 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
- Cui, M., Zhay, Y. and Ji, G. (2011), "Experimental study of rock breaking effect of steel particles", J. Hydrodyn, 23(2), 241-246. https://doi.org/10.1016/S1001-6058(10)60109-6
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique; 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min. Sci., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002
- Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech.,78(15), 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
- Erarslan, N. and Williams, D.J. (2012), "The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks", Int. J. Rock Mech. Min. Sci., 56, 15-26.
- Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies in Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
- Ghazvinian, A, Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2012), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8
- Haeri, H. (2015a), "InfluZence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete , 16(4), 605-623, https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. (2015b), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881
- Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under Shear Loading Conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
- Haeri, H. (2015d), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
- Haeri, H. and Marji, M.F. (2016b), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geo., 9(2), 1-10.
- Haeri, H. and Sarfarazi, V., (2016a), The effect of micro pore on the characteristics of crack tip plastic zone in concrete, Computers and Concrete, 17(1), 107-12. https://doi.org/10.12989/cac.2016.17.1.107
- Hannant, D.J., Buckley, K.J. and Croft, J. (1973), "The effect of aggregate size on the use of the cylinder splitting test as a measure of tensile strength", Mater. Constr., 6(1), 15-21. https://doi.org/10.1007/BF02474838
- Ibrahim, M.W., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia-Social and Behavioral Sciences, 195, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317
- Itasca Consulting Group Inc. (2003), "PFC3D (particle flow code in 3dimensions) version 3.0". Minneapolis: Itasca.
- Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x
- Kim, J.J. and Reda Taha, M. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 1-8.
- Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
- Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
- Pandit, G.S. (1970), "Concrete rings for determining tensile strength of concrete", ACI J., 847-848.
- Potyondy, D.O. amd Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
- Sarfarazi, V, Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V. (2015), "A new approach for measurement of tensile strength of concrete, the first international and the thired national conference of architecture", Constr. Urban Envir., 1-8.
- Sarfarazi, V., Hamid R.F., Haeri, H. and Wulf, S. (2016), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-286. https://doi.org/10.12989/ACC.2015.3.4.269
- Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
- Tedesco, J.W. and Ross, C.A. and Kuennen, S.T. (1973), "Experimental and numerical analysis of high strain rate splitting tensile tests", ACI Mater. J., 90, 162-169.
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
- Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29. https://doi.org/10.1016/j.engfracmech.2013.01.018
- Wang, Q.Z. (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6),1006-1011. https://doi.org/10.1016/j.ijrmms.2010.05.005
- Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
- Wang, Q.Z., Gou, X.P. and Fan, H. (2012) ,"The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
- Yang, S.Q. (2011), "Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation breakage", Eng. Fract Mech., 78, 3059-3081. https://doi.org/10.1016/j.engfracmech.2011.09.002
- Yerlici, Vedat A. (1965), "Behavior of plain concrete under axial tension", ACI J., 987.
Cited by
- Simulating Tensile and Compressive Failure Process of Concrete with a User-defined Bonded-Particle Model vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0292-1
- Numerical Research on Energy Evolution and Burst Behavior of Unloading Coal–Rock Composite Structures pp.1573-1529, 2018, https://doi.org/10.1007/s10706-018-0609-5
- A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
- Numerical study of the effect of ITZ on the failure behaviour of concrete by using particle element modelling vol.170, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.03.040
- Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC vol.24, pp.6, 2016, https://doi.org/10.12989/cac.2019.24.6.527
- Optimization of chipping parameters to mitigate the damage in a concrete substrate using a discontinuum modelling approach vol.258, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2020.119658
- Mechanical Behaviour of Cement-Bound Gravels by Experiment-Based 3D Multi-Scale Modelling: Application to Non-Hazardous Waste Incineration Bottom Ashes Aggregates for Use in Road Engineering vol.54, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jera.54.71
- Compression‐induced crack initiation and growth in flawed rocks: A review vol.44, pp.7, 2021, https://doi.org/10.1111/ffe.13477
- Rheology of Cement Pastes with Siliceous Fly Ash and the CSH Nano-Admixture vol.14, pp.13, 2016, https://doi.org/10.3390/ma14133640
- A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189
- Fracture analysis of rock reconstruction models based on cooling–solidification annealing algorithms vol.44, pp.9, 2016, https://doi.org/10.1111/ffe.13531
- Corrosion Performance of Nano-TiO2-Modified Concrete under a Dry-Wet Sulfate Environment vol.14, pp.19, 2021, https://doi.org/10.3390/ma14195900
- DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model vol.149, pp.None, 2016, https://doi.org/10.1016/j.cemconres.2021.106577
- Compressive Behavior of Oil Shale with Calcareous Concretion: Parametric Study vol.11, pp.23, 2016, https://doi.org/10.3390/app112311244