• 제목/요약/키워드: splitting test and ring test

검색결과 4건 처리시간 0.021초

고강도 콘크리트의 부착할렬기구에 관한 실험적 연구 (An Experimental Study on the Bond Split Mechanism of High Strength Concrete)

  • 장일영
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가 (Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor)

  • 김문길;천성철;김영호;심혜정;배민서
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.463-471
    • /
    • 2016
  • 이 연구에서는 롯드 앵커에 강재 링을 추가한 고전단 링앵커의 전단실험을 바탕으로 강도평가 모델을 개발하였다. 고전단 링앵커의 전단강도는 콘크리트 압축강도의 3/4 제곱에 비례하여, 강-콘크리트 합성구조에 사용되는 전단연결재와 유사한 강도 특성을 발현하였다. 콘크리트 압축강도, 측면연단거리, 롯드 묻힘깊이를 고려한 단일 고전단 링앵커 전단강도 평가 모델을 개발하였다. 22개 실험결과와 비교한 결과 [실험값]/[예측값]의 평균이 1.01 변동계수 7.57%로 나타났다. 한면에 4개씩 총 8개의 고전단 링앵커에 대한 Push 실험을 수행하고, 개발된 전단강도 모델과 비교하였다. 다수의 고전단 링앵커 Push 실험 결과, 단일 고전단 링앵커와 유사하게 측면 연단거리 100 mm에서는 쪼갬파괴가 발생되고, 측면 연단거리 150 mm에서는 쪼갬파괴와 지압파괴가 혼합되어 발생하였다. 쪼갬 파괴가 발생된 경우, 가력방향으로 고전단 링앵커 간격이 측면 연단거리의 4배인 400 mm이면 파괴면이 독립적으로 발생되어, 앵커 사이 간섭이 발생되지 않았다. 지압 파괴가 발생된 경우, 지압파괴의 영향 길이가 150 mm 미만으로 가력방향으로 고전단 링앵커의 간격이 200 mm를 확보하면 앵커 사이 상호 간섭이 발생되지 않았다. 다수 고전단 링앵커 Push실험에 의한 전단강도는 이 연구에서 개발된 예측강도의 평균 98%가 발현되었다. 개발된 전단강도 모델이 다수의 고전 단 링앵커의 전단강도 예측에도 활용될 수 있을 것으로 판단된다.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.