DOI QR코드

DOI QR Code

FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3

  • Abdelatif, Mohamed (Department of Mathematics Faculty of Science Assiut University) ;
  • Alldeen, Hamdy Nour (Department of Mathematics Faculty of Science Assiut University) ;
  • Saoud, Hassan (Department of Mathematics Faculty of Science Assiut University) ;
  • Suorya, Saleh (Department of Mathematics Faculty of Science Assiut University)
  • Received : 2015.06.05
  • Published : 2016.07.01

Abstract

Chen and Ishikawa studied the surfaces of revolution of the polynomial and the rational kind of finite type in Euclidean 3-space $E^3$ [10]. Here, the pedal of revolution surfaces of the polynomial and the rational kind are discussed. Also, as a special case of general revolution surfaces, the sphere and catenoid are studied for the kind of finite type.

Keywords

References

  1. C. Baikoussis, Ruled submanifolds with finite type Gauss map, J. Geom. 49 (1994), no. 1-2, 42-45. https://doi.org/10.1007/BF01228047
  2. C. Baikoussis, F. Defever, P. Embrechts, and L. Verstraelen, On the Gauss map of the cyclides of dupin, Soochow J. Math. 19 (1993), no. 4, 417-428.
  3. C. Baikoussis and L. Verstraelen, The chen-type of the spiral surfaces, Results Math. 28 (1995), no. 3-4, 214-223. https://doi.org/10.1007/BF03322254
  4. B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1984.
  5. B. Y. Chen, Finite type submanifolds and generalizations, Universita degli Studi di Roma "La Sapienza", Dipartimento di Matematica. IV, 68, 1985.
  6. B. Y. Chen, Surfaces of finite type in Euclidean 3−space, Bull. Soc. Math. Belg. Ser. B 39 (1987), no. 2, 243-254.
  7. B. Y. Chen, A report on submanifolds of finite type, J. Math. Soc. 22 (1996), no. 2, 117-337.
  8. B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45 (2014), no. 1, 87-108. https://doi.org/10.5556/j.tkjm.45.2014.1564
  9. B. Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
  10. B. Y. Chen and S. Ishikawa, On Classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298. https://doi.org/10.21099/tkbjm/1496162145
  11. B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
  12. A. Ferrandez and P. Lucas, Finite type surfaces of revolution, Rivista di Math. Pura ed Applicatan 12 (1992), 75-87.
  13. Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, The pedal of a hypersurface, Technical Report (1983), no. 96.
  14. Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, On the caustic of convex mirror, Geometriae Dedicata 28 (1988), 153-158.
  15. S. A. Hassan, Higher order Gaussian curvature of pedal hypersurfaces, J. Institute of Math. & Computer Sciences 16 , 2003.
  16. V. Hlavaty, Differentielle Linien Geometrie, P. Nortdhoff, Groningen, 1945.
  17. J. Hoschek, Integral invarianten von regel flachhen, Arch. Math. XXIV (1973), 218-224.
  18. E. Kasap, A. Saraoglugil, and N. Kuruoglu, The pedal cone surface of a developable ruled surface, Intern. J. Pure Appl. Math. 19 (2005), no. 2, 157-164.
  19. N. Kuruoglu, Some new characteristic of the pedal surfaces in Euclidean space $E^3$, Pure Appl. Math. Sci. 23 (1996), no. 1-2, 7-11.
  20. N. Kuruoglu and A. Sarioglugil, On the characteristic properties of the hyperpedal sur-faces in (n + 1)-dimensional Euclidean space $E^{n+1}$, Pure Appl. Math. Sci. IV (2002), no. 1-2, 15-21.
  21. G. Salmon, Analytic Geometry, Accademic Press., New York, 1966.
  22. M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan, and S. Q. Saleh, Frenet surfaces with pointwise 1-type Gauss map, Wulfenla. J., Klagenfurt Austria 22 (2015), no. 1, 169-181.
  23. M. A. Soliman, S. A. Hassan, and E. Y. Abd ElMonem, Examples of surfaces gained by variation of pedal surfaces in $E^{n+1}$, J. Egyptian Math. Soc. 18 (2010), no. 1, 91-105.
  24. T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. https://doi.org/10.2969/jmsj/01840380
  25. D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure Appl. Math. 32 (2001), no. 12, 1803-1808.