References
- C. Baikoussis, Ruled submanifolds with finite type Gauss map, J. Geom. 49 (1994), no. 1-2, 42-45. https://doi.org/10.1007/BF01228047
- C. Baikoussis, F. Defever, P. Embrechts, and L. Verstraelen, On the Gauss map of the cyclides of dupin, Soochow J. Math. 19 (1993), no. 4, 417-428.
- C. Baikoussis and L. Verstraelen, The chen-type of the spiral surfaces, Results Math. 28 (1995), no. 3-4, 214-223. https://doi.org/10.1007/BF03322254
- B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1984.
- B. Y. Chen, Finite type submanifolds and generalizations, Universita degli Studi di Roma "La Sapienza", Dipartimento di Matematica. IV, 68, 1985.
- B. Y. Chen, Surfaces of finite type in Euclidean 3−space, Bull. Soc. Math. Belg. Ser. B 39 (1987), no. 2, 243-254.
- B. Y. Chen, A report on submanifolds of finite type, J. Math. Soc. 22 (1996), no. 2, 117-337.
- B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45 (2014), no. 1, 87-108. https://doi.org/10.5556/j.tkjm.45.2014.1564
- B. Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. https://doi.org/10.4134/JKMS.2005.42.3.447
- B. Y. Chen and S. Ishikawa, On Classification of some surfaces of revolution of finite type, Tsukuba J. Math. 17 (1993), no. 1, 287-298. https://doi.org/10.21099/tkbjm/1496162145
- B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. https://doi.org/10.1017/S0004972700013162
- A. Ferrandez and P. Lucas, Finite type surfaces of revolution, Rivista di Math. Pura ed Applicatan 12 (1992), 75-87.
- Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, The pedal of a hypersurface, Technical Report (1983), no. 96.
- Chr. Georgiou, Th. Hasanis, and D. Koutrofiotis, On the caustic of convex mirror, Geometriae Dedicata 28 (1988), 153-158.
- S. A. Hassan, Higher order Gaussian curvature of pedal hypersurfaces, J. Institute of Math. & Computer Sciences 16 , 2003.
- V. Hlavaty, Differentielle Linien Geometrie, P. Nortdhoff, Groningen, 1945.
- J. Hoschek, Integral invarianten von regel flachhen, Arch. Math. XXIV (1973), 218-224.
- E. Kasap, A. Saraoglugil, and N. Kuruoglu, The pedal cone surface of a developable ruled surface, Intern. J. Pure Appl. Math. 19 (2005), no. 2, 157-164.
-
N. Kuruoglu, Some new characteristic of the pedal surfaces in Euclidean space
$E^3$ , Pure Appl. Math. Sci. 23 (1996), no. 1-2, 7-11. -
N. Kuruoglu and A. Sarioglugil, On the characteristic properties of the hyperpedal sur-faces in (n + 1)-dimensional Euclidean space
$E^{n+1}$ , Pure Appl. Math. Sci. IV (2002), no. 1-2, 15-21. - G. Salmon, Analytic Geometry, Accademic Press., New York, 1966.
- M. A. Soliman, H. N. Abd-Ellah, S. A. Hassan, and S. Q. Saleh, Frenet surfaces with pointwise 1-type Gauss map, Wulfenla. J., Klagenfurt Austria 22 (2015), no. 1, 169-181.
-
M. A. Soliman, S. A. Hassan, and E. Y. Abd ElMonem, Examples of surfaces gained by variation of pedal surfaces in
$E^{n+1}$ , J. Egyptian Math. Soc. 18 (2010), no. 1, 91-105. - T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. https://doi.org/10.2969/jmsj/01840380
-
D. W. Yoon, Rotation surfaces with finite type Gauss map in
$E^4$ , Indian J. Pure Appl. Math. 32 (2001), no. 12, 1803-1808.