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FINITE TYPE OF THE PEDAL OF REVOLUTION

SURFACES IN E3

Mohamed Abdelatif, Hamdy Nour alldeen, Hassan Saoud,

and Saleh Suorya

Abstract. Chen and Ishikawa studied the surfaces of revolution of the
polynomial and the rational kind of finite type in Euclidean 3-space E

3

[10]. Here, the pedal of revolution surfaces of the polynomial and the
rational kind are discussed. Also, as a special case of general revolution
surfaces, the sphere and catenoid are studied for the kind of finite type.

1. Introduction

The study of submanifolds of finite type began in the late 1970’s through the
author’s attempts to find the best possible estimate of the total mean curvature
of a compact submanifold of a Euclidean space and to find a notion of “degree”
for submanifolds of a Euclidean space.

The first results on this subject have been collected in [4] and [5]. Since that
time, the subject has had a rapid development.

The class of submanifolds of finite type is large, it consists of nice sub-
manifolds of Euclidean spaces. For example, all minimal submanifolds of a
Euclidean space and all minimal submanifolds of hyperspheres are of 1-type
and vice versa. Also, all parallel submanifolds of a Euclidean space and all
compact homogeneous Riemannian manifolds equivariantly immersed in a Eu-
clidean space are of finite type.

On one hand, the study of finite type submanifolds provides a natural way
to combine the spectral theory with the geometry of submanifolds and smooth
maps; in particular, with the Gauss map. On the other hand, the tools of ge-
ometry of submanifolds can then be applied to the study of spectral geometry
via the study of finite type submanifolds. The notion of finite type immersion
is naturally extended in particular to the Gauss map G on a surface M in
Euclidean space [11], such that finite type Gauss map is an especially useful
tool in the study of submanifolds [1] and [25]. Baikoussis et al. [2] have shown
that the Gauss map of the cyclides of dupin is of infinite type. Also, Chen
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et al. [9] introduced the notion of pointwise 1-type Gauss map of the first and
second kinds and study surfaces of revolution with such Gauss map. Soliman et
al. [22] have studied ruled surfaces which are generated by a linear combination
of Frenet frame along a base curve and found the conditions which determine
Frenet surfaces of 1-type or pointwise 1-type Gauss map of the first kind de-
pending on the kind of base curve in E3. Also Baikoussis et al. [3] studied finite
type of spiral surfaces, which are a generalization of the revolution surfaces in
E3.

The notion of the pedal of a given surface M in E3 with respect to a chosen
origin is well known in literature [13, 14, 15] and [19, 20, 21].

Georgiou et al [13] have studied the differential geometry of the pedal surface
of M and they investigated the application in geometric optics. Kuruoğlu [19]
has studied the pedal surface with respect to a point in the interior of a closed,
convex and smooth surface in E3 and given some new characteristic properties
of the pedal surface of M. The pedal surface has been generalized by Kuruoğlu
and Sarioğlugil, [20]. In addition, ruled surfaces were investigated first by G.
Monge who established the partial differential equation satisfied by all ruled
surfaces. Thus, ruled surfaces were formed by a one-parameter set of lines and
investigated by Hlavaty [16] and Hoschek [17]. Furthermore, In [18] authors
look for the answer of the question of what the pedal of the developable is ruled
surface M in E3 and they show that the pedal of M is a curve. Soliman et
al [23] studied the variation problem of examples of pedal surfaces and pedal
hypersurfaces in En+1.

In this work our main aim is to obtain a classification of the pedal of revolu-
tion surfaces of polynomial and rational kind in Euclidean 3-space E3 of finite
type, and to research if the character finite type is inherited or not. We found
that the pedal of revolution surfaces of polynomial kind are infinite type. Also,
we research in the revolution surfaces of rational kind which have degree of de-
nominator larger than the degree of the numerator and got the pedal surfaces
of them of infinite type. Finally, we prove that a pedal of surfaces does not
preserve the property of finite type for these surfaces by given some examples.

2. Preliminaries

Here, and in the sequel, we assume that the index i, j ≥ 1 unless otherwise
stated.

Let a surface M : X = X(u, v) in an Euclidean 3-space E3. The map G :
M → S2(1) ⊂ E3 which sends each point of M to the unit normal vector to
M at the point is called the Gauss map of a surface M ; where S2(1) denotes
the unit sphere of E3. And the Gauss map is given by

(1) G =
Xu ×Xv

| Xu ×Xv | ,

whereXu andXv are the first partial derivatives with respect to the parameters
u, v of X. For the matrix (gij) of the Riemannian metric on M we denote by
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(g ij) the inverse matrix and g is the determinant of the matrix (gij). The
Laplacian ∆ associated with the induced metric g on M is given by

(2) ∆ = − 1√
g

2
∑

i,j=1

∂

∂xi
(
√
g g ij ∂

∂xj
).

The mean curvature H of the surface is defined by

(3) H =
1

2

2
∑

i,j=1

g ij Lij ,

where Lij are the coefficients of the second fundamental form.
An isometric immersion X : M → E3 of a submanifold M in E3 is said to

be of finite type if X identified with the position vector field of M in E3 can
be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M, that is,

(4) X = X0 +

j
∑

i=1

Xi,

where X0 is a constant map and X1, X2, . . . , Xj non-constant maps such that

(5) ∆Xi = λi Xi, λi ∈ R, 1 ≤ i ≤ j.

If λ1, λ2, . . . , λj are different eigen values, then M is said to be of j-type. If in
particular, one of λi is zero thenM is said to be of null j-type. If all coordinate
function of E3, restricted to M, are of finite type, then M is said to be finite
type. Otherwise, M is said to be infinite type. Similarly, a smooth map φ an
2-dimensional Riemannian manifold M of E3 is said to be finite type if φ is a
finite sum of E3-valued eigenfunctions of ∆ [4] and [5].

Let M be a connected (not necessary compact) surface in E3. Then the
position vector X and the mean curvature vector H of M in E3 satisfy [4]

(6) ∆X = −2H,

where H = HG. This formula yields the following well-known result: A surface
M in E3 is minimal if and only if all coordinate functions of E3, restricted to
M, are harmonic functions, that is,

(7) ∆X = 0.

We recall theorem of T. Takahashi [24] and [7] which states that a submani-
fold M in a Euclidean space is of 1-type, i.e., the position vector field of the
submanifold in the Euclidean space satisfies the differential equation

(8) ∆X = λX,

for some real number λ, if and only if either the submanifold is a minimal
submanifold of the Euclidean space (λ = 0) or it is a minimal submanifold of
a hypersphere of the Euclidean space centered at the origin (λ 6= 0).

We mention the following known result for later use.
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Proposition 2.1 ([4, 6, 8] and [10]). Let M be a j-type surfaces whose spectral

decomposition is given by Eq. (4). If we put

(9) P (T ) =

j
∏

i=1

(T − λi),

then

(10) P (∆)(X −X0) = 0.

We can rewrite the previous equation as follows

(11) ∆j+1 X+ d1 ∆
j X+ · · · + dj ∆X = 0,

where d1, d2, . . . , dj are constants.
And the monic polynomial P is called the minimal polynomial which plays

a very important role to find out whether or nor a surface is of finite type.
We say M be a surface of revolution if it is generated by a plane curve α(u)

when it is rotated around a straight line in the same plane. Let the plane be
x z and the line be z-axis. Then, the parametrization of the plane curve takes
the following form [12]:

(12) α(u) = {f(u) , h(u)}.
Hence the parametrization of the surface of revolution is given by

(13) X(u, v) = {f(u) cos v , f(u) sin v , h(u)}.
Chen and Ishikawa introduced in [10] the notion of surfaces of revolution of
polynomial and rational kinds: A surface of revolution which is given by
Eq. (13) is said to be of the polynomial kind if f(u) and h(u) are polyno-
mial functions in u; and it is said to be of rational kind if h(u) is a rational
function.

Let M be a smooth, convex surface in E3 and O be a point not on M. If
X is the position vector of a point P on M with respect to O as origin and
G is the inner unit normal vector of the surface at P ∈ M, then the support
function F of M is defined by

(14) F = − < X , G >,

where < , > is an inner product in E3. Geometrically, F is the distance from
the origin 0 to the tangent plane of M at the point of M described by X.

Suppose now that there exists a point 0 that lies on no tangent plane of M ;
we call such a point an admissible origin for M. If we choose an admissible 0
as origin, the corresponding support function clearly never vanishes. Thus, by
connectivity, either F > 0 or F < 0.

The surface M with the position vector

(15) X = −F G,

of an arbitrary point P on the tangent plane TM(P ) of M with respect to O
as origin is called the pedal surface of M with respect to O. Geometrically, we
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can construct the pedal surface M as follows: We draw tangent plane TM(P )
and we get the normal to that plane from O. The normal contacts the plane
TM(P ) at a point P . The locus of all points P for all P ∈ M will give the
pedal surface.

3. Pedal of the revolution surfaces of polynomial kind

The goal of this section is to study pedal of revolution surfaces M of the
polynomial kind in the Euclidean 3-space E3 and to look the property of finite
type of them.

LetM be a surfaces of revolution of the polynomial kind. Hence the position
vector of M is given as Eq. (13).

Then, the unite normal vector filed of M is defined by

(16) G =
1√
γ
{− cosv h ′(u) , − sin v h ′(u) , f ′(u)},

where, γ = f ′2 + h ′2 6= 0.
Using Eqs. (13)–(16), we find that the pedal surface of revolution of the

polynomial kind can be written in the form

(17) X(u, v) =
1

γ
{λ h ′ cos v , λ h ′ sin v , −λ f ′},

where, λ = f h ′ − h f ′ 6= 0. Therefore we get:

Corollary 3.1. The Pedal of revolution surface of polynomial kind is a revo-

lution surface.

The unite normal vector filed of M is given by

(18) G =
1

γ β
{ω cos v , ω sin v , µ},

where
(19)

ω = 2 f ′hh ′+ f (f ′2−h ′2), µ = 2 f f ′h ′+h (h ′2− f ′2), β =
√

f 2 + h 2 6= 0.

Therefore, using Mathematica program, we can be written the Laplacian ∆ of
M as

(20) ∆ =
γ2

β4ǫ3λ2h ′2

(

h ′λ
(

f 3h ′2ψ+f hh ′2θ
) ∂

∂u
−ǫβ2λ2h ′2 ∂2

∂u 2
−β4ǫ3

∂2

∂v 2

)

,

where

ǫ = h ′f ′′ − f ′h ′′ 6= 0,

φ = 2 f ′h ′′2 + h ′2f (3) − h ′(2 f ′′h ′′ + f ′(3)),

ψ = h h ′2f ′′2 + f ′h ′2(h ′f ′′(3))− f ′2(h ′′ (h ′2 + h h ′′)− h h ′(3)),(21)

ρ = − f ′2h ′f ′′ + f ′3h ′′ + h ′ (f ′′(h ′2 − 2 h h ′′) + h h ′(3))

− f ′(h ′′(h ′2 − 2 h h ′′) + h h ′(3)),
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θ = h h ′2f ′′2 − f ′h ′2(h ′ f ′′(3)) + f ′2(h ′′(h ′2 − h h ′′) + h h ′(3)).

Let X1, X2, and X3 be the three components functions of the X. Here, we
take

(22) X3 = −f
′ λ

γ
.

Then, by direct computation, it leads immediately to

(23) ∆ X3 =
R1(u)

Q1(u)
,

where

R1 = µ
(

h ′2 γ − β2 η f ′′2 f ′ η h ′′), Q1 = −β4 h ′ λ γ ǫ,

η = 4 h f ′h ′ + f (f ′2 − 3 h ′2).(24)

We give the following lemma to help us in our work.

Lemma 3.1. Let R1(u) and Q1(u) be polynomial functions in u and M is the

pedal surface of a revolution M of polynomial kind in E3 which is parametrized

by Eq. (13). Then

∆ (
R1(u)

Q1(u)
) =

R2(u)

Q2(u)

for some polynomial functions R2(u) and Q2(u) with,

degR2(u)− degQ2(u)(25)

≤ degR1(u)− degQ1(u)− 2 (q + r) + 2 max{r , q − 1}+ s,

where s is a positive integer.

Proof. By using Eq. (20) and straight-forward computations, we get

(26) ∆ (
R1(u)

Q1(u)
) =

R2(u)

Q2(u)
,

where

R2(u) = −γ2
(

− β2 h ′λǫ
(

R1(2Q
′
1
2 −Q1Q

′′
1 ) +Q1(Q1R

′′
1 − 2Q ′

1R
′
1)
)

+Q1(Q1 R
′
1 −R1Q

′
1)(f

3 h ′φ+ f2ψ + f hh ′ρ+ h2θ)
)

,

Q2(u) = −β4Q3
1h

′λǫ3.(27)

For convenient, put deg h = q and deg f = r where deg h and deg f are degrees
of h(u) and f(u), respectively. Then, it is easy to see that

deg β2 = 2max {q , r}, deg γ = 2 max {q , r} − 2, deg λ ≤ q + r − 1,

degφ = 2 q + r − 5, degψ ≤ 3 q + 2 r − 6, deg ǫ ≤ q + r − 3,

deg ρ ≤ 2 max {q , r}+ q + r − 5, deg µ ≤ 2 max{q , r} + q − 2,

deg η ≤ 2 max {q , r}+ r − 2, deg θ ≤ 3 q + 2 r − 6,

degR1 ≤ 6 max {q , r}+ 2q + 2r − 7, degQ1 ≤ 6max {q , r} + 3 q + 2 r − 7,
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degR2 ≤ 6 max {q , r}+ degR1 + 2 degQ1 + 3 q + 2 r − 11,

degQ2 ≤ 4 max {q , r}+ 3 degQ1 + 5 q + 4 r − 11.

Let s = 4 max {q , r} + 3degQ1 + 5 q + 4 r − 11− degQ2 ≥ 0. Hence,

deg(
R2

Q2
) = degR2 − degQ2

≤ degR1 − degQ1 − 2 (q + r) + 2 max {q , r} + s.

For degR2−degQ2 ≤ degR1−degQ1, it must be 2 max{q , r}−2(q+r)+s ≤ 0.
Therefore, we have the following probabilities.

(i) If r ≥ q ⇒ s ≤ 2 q.
(ii) If q > r ⇒ s ≤ 2 r. �

Moreover, by Eqs. (23) and (26), we may conclude inductively that

(28) ∆
j
X3 =

Rj

Qj

for some polynomial functions Ri and Qi. Therefore, by Lemma 3.1 we have

(29) degRj+1 − degQj+1 ≤ degRj − degQj ≤ · · · ≤ degR1 − degQ1.

Suppose M is of finite type, say of j−type. Let

(30) P (T ) = T j + d1 T
j−1 + · · · + dj−1 T + dj ,

be minimal polynomial of M given in Proposition 2.1. Then P has k distinct
real roots. Consequently, from Eq. (28) and Proposition 2.1 we have

(31)
Rj+1

Qj+1
+ d1

Rj

Qj

+ · · · + dj
R1

Q1
= 0.

Put D = Qj+1 Qj · · · Q1. Therefore, we get

(32) D
Rj+1

Qj+1
+ d1 D

Rj

Qj

+ · · · + dj D
R1

Q1
= 0.

From Eq. (29) we find

(33) degD
Rj+1

Qj+1
≤ degD

Rj

Qj

≤ · · · ≤ degD
R1

Q1

which is impossible. Based on the above results, we conclude the following

(i) If q = 0, then X = {f(u) cos v , f(u) sin v , c}; where c is constant.
Therefore M is a plane and M is a degenerate pedal surface to point
(0, 0, c).

(ii) If r = 0, then X = {c cos v , c sin v , h(u)}; where c is constant. There-
fore

X = {c cos v , c sin v , 0}.
That is, M degenerate to a circular curve of 1-type. It is clear that for
q = 1, then M is circular cylinder.
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(iii) If r = q = 1, then X = {(a s+ b) cos v , (a s+ b) sin v , c s+ d} where
a, b, c, and d are constants. Therefore M is a cone (infinite type [12]).
Then

X = {c (bc− ad) cos v

a2 + c2
,
c (bc− ad) sin v

a2 + c2
,
a (ad− bc)

a2 + c2
},

one can seeM degenerate to a circular curve of 1-type where bc−ad 6= 0.
However, if bc− ad = 0, then M degenerates to a point {0, 0, 0}.

(iv) If r, q ≥ 1 otherwise r = q = 1 then, from (33) and Lemma 3.1 we
conclude that it is impossible. To illustrate this we give the following
example.

Example 3.1. Let f(u) = 2u− 3 and h(u) = 2u4 + 7u3 − 4u− 6. Then

r = 1, q = 4, r1 = 27, q1 = 31, ri+1 = 2qi + ri + 27, qi+1 = 3qi + 29, ∀ i.
Substituting the above values in Eq. (32) and taking some cases we get

• If j = 1 ⇒ D R2

Q2

+ d1D
R1

Q1

= 0, the resulting equation from degree
149.

• If j = 2 ⇒ D R3

Q3

+ d1 D
R2

Q2

+ d2 D
R1

Q1

= 0, and this equation has

degree 540 where D R3

Q 3

has the largest degree, and these cases lead to

contradiction with (33). See Figure 1.

(a) Surface M (b) The pedal surface M

u ∈ [0.001, 1], v ∈ [−3π, 3π]

Figure 1. The pedal of revolution surfaces of polynomial kind

(v) If M is a plane, then X3 = c = constant. Hence c = −λ f ′

γ
=

f ′ (h f ′−f h ′)
f ′2+h ′2 , and this implies

(1) If c = 0 ⇒ f ′ (h f ′ − f h ′) = 0. Then
– Either f ′ = 0 ⇒ f = constant ⇒ r = 0, this contrasts

with Case (ii).

– Or (h f ′ − f h ′) = 0 ⇒ h ′

h
= f ′

f
⇒ h = cf ⇒ X =

(0, 0, 0), this contradiction.
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(2) If c 6= 0 ⇒ f ′(h f ′ − f h ′) = c (f ′2 + h ′2) ⇒ h ′ (c h ′ + f f ′) =
f ′2 (h − c) ⇒ 2 deg f ≤ max{2 deg f , deg h}. Then, either

deg f ≥ degh
2 or deg h > deg f, and this is impossible as the

following example shows.

Example 3.2. Let f(u) = u3 − 2u− 3 and h(u) = 2u4 +7u3 − 4u− 6, where
r = 3, q = 4. From Figure 2 one can see M is not plane.

(a) Surface M (b) The pedal surface M

u ∈ [0.001, 1], v ∈ [−3π, 3π]

Figure 2. The pedal of revolution surfaces of polynomial kind

(vi) If M is a circular cylinder, then from Eq. (17) we find λ h ′

γ
= constant.

Consequently, by derivative we get

(λ ′ h ′ + λ h ′′)γ − λ h ′ γ ′

γ 2
= 0 ⇒ λ ′

λ
+
h ′′

h ′ =
γ ′

γ
⇒ lnh ′ = ln

c γ

λ

⇒ h ′ c γ

λ ,

This means that h is an exponential function and this is a contradiction
where c γ

λ
6= constant. Because if c γ

λ
= constant = c1, then c (f ′2 +

h ′2) = c 1(f h
′ − h f ′). Therefore,

c f ′2 + c h ′2 − c 1 f h
′ + c 1 h f

′ = 0.

Consequently, one can have the following cases
– If r = q ⇒ max{2(r−1) , 2(q−1) , r+q−1} = 2r−1 = 0 ⇒ r = 1

2
and this is impossible.

– If r > q ⇒ max{2(r− 1) , 2(q− 1) , r+ q− 1} = 2r− 2 = 0 ⇒
r = 1, q = 0 and this gives us Case ( i ) and this contradiction.

– If q > r ⇒ max{2(r− 1) , 2(q− 1) , r+ q− 1} = 2q− 2 = 0 ⇒
q = 1, r = 0 and its back us to Case (ii) and this contradiction.

According to the result in [10] and our result, we can reformulate the fol-
lowing theorem.

Theorem 3.1. The pedal surface of revolution M is infinite type if and only

if its original surface M is infinite type except M is cone.
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4. Pedal of the revolution surfaces of rational kind

In this section, we shall study pedal M of revolution surface M of rational
kind in the Euclidean 3-space E3.

Assume M be a revolution surface of rational kind. Then, without loss of
generality, we may assume M is parameterized by

(34) X(u, v) =
{

u cos v , u sin v ,
A(u)

B(u)

}

, B(u) 6= 0,

where, A(u) and B(u) are polynomials. Therefore, the unite normal vector
field on M is given by

(35) G =
1

√

Q(u)
{−Z(u) cos v , −Z(u) sin v , B2(u)},

where

(36) Z(u) = B(u)A ′(u)−A(u)B ′4(u) + Z 2(u) 6= 0, Z(u) 6= 0.

Hence, we get the pedal of the revolution surface of rational kind writing as
follows

(37) X(u, v) =
1

Q(u)
{R(u) cos v , R(u) sin v , γ(u)},

where

(38) R(u) = Z(u)
(

uZ(u)−A(u)B(u)
)

, γ(u) = B 2(u)
(

A(u)B(u)− uZ(u)
)

.

From above we obtain:

Corollary 4.1. The Pedal of revolution surface of rational kind is a revolution

surface.

The unite normal vector filed on M is

(39) G =
1

√

η(u)
{ǫ(u) cos v , ǫ(u) sin v , −δ(u)},

where

ǫ = γ(u)Q ′(u)−Q(u) γ ′(u) 6= 0, δ = R(u)Q ′(u)−Q(u)R ′(u) 6= 0,

η = ǫ2(u) + δ2(u) 6= 0.(40)

Then, by direct computations, we can find the Laplacian ∆ of M is given by

(41) ∆ =
Q 2

2 η2 R 2

(

Q
(

2Rη (QR) ′+Qη ′2) ∂

∂u
− 2Q 2 η R 2 ∂2

∂u 2
− 2 η2

∂2

∂v 2

)

.

Let X1, X2, and X3 be the three components functions of X. Then, we take

(42) X1 =
R

Q
cos v.
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Easy computations, we can get

(43) ∆ X1 =
R1

Q1
cos v,

where

R1 = Q
(

− η2−δ (Q η R ) ′−R η
(

R (QQ ′) ′ +Q (Q R ′) ′
)

+
3

2
QR δ η ′

+ 3Q ′R η(Q ′ R−QR ′)
)

,

Q1 = R η2.(44)

Consequently

(45) ∆
i
X1 =

Ri

Qi

cos v,

where

Ri+1 = Q 3 Qi R (Q η Ri RQ
′
i)

′4 Qi
′2 R 2 Ri η

+Q 2
i Q

2
(

Ri η
2 −QR (R ′

i Q η R ) ′
)

+Q 4 Qi Q
′
i R

2 R ′
i η −

3

2
Q 4 Qi R

2 η ′(Ri Q
′
i −R ′

i Qi),

Qi+1 = Q3
i R

2 η2, ∀ i.(46)

Assume M is of finite type, say j-type. From Eqs. (11) and (45) we obtain

(47)
Rj+1

Qj+1
+ d1

Rj

Qj

+ · · · + dj
R1

Q1
= 0.

Let D = Qj+1 Qj · · · Q1. Hence

(48) D
Rj+1

Qj+1
+ d1 D

Rj

Qj

+ · · · + dj D
R1

Q1
= 0.

For simplicity, we put a = degA(u), b = degB(u), r = degR(u), q =
degQ(u), r1 = degR1(u), q1 = degQ1(u), ri = degRi(u), and qi = degQi(u).

We will study the following cases.

Case (i). if a > b

Lemma 4.1. If a > b, then, for any i ≥ 1, we have

(49) ri − qi ≤ 1− 2i+ s,

where s is a positive integer.

Proof. From Eqs. (36), (38), and (44) we get

r ≤ 2(a+ b)− 1, q = 2(a+ b)− 2, r1 ≤ 18(a+ b)− 18, q1 ≤ 18(a+ b)− 17.

Let s = 18(a+ b)− 17− q1 ≥ 0. Then, r1 − q1 ≤ −1+ s. Assume (49) holds for
some i ≥ 1. Therefore, by Eqs. (46) we get

(50) ri+1 ≤ 2qi + ri + 20(a+ b)− 20, qi+1 = 3qi + 20(a+ b)− 18− s ≥ 0.
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This implies ri+1 − qi+1 ≤ ri − qi − 2 + s ≤ 1− 2(i+ 1) + s. �

From the above lemma, we have a large number of possibilities, so we give
an illustrative example.

Example 4.1. Let A(u) = u3 + 2 and B(u) = u 2 + u 6= 0. Then

r = 8, q = 8, deg η = 28, r1 = 66, q1 = 64, ri+1 = 2qi + ri + 74,

qi+1 = 3qi + 72, ∀ i.
Inserting the above values in Eq. (48) will imply some cases.

• If j = 1 ⇒ D R2

Q2

+ d1 D
R1

Q1

= 0, we find this equation from degree
332.

• If j = 2 ⇒ D R3

Q3

+ d1 D
R2

Q2

+ d2 D
R1

Q1

= 0, also this equation has

degree 1198.

We note if the value of j is increased, then the degree of Eq. (48) is greatly
increased. Therefore, this case is impossible. According to the results in [10]
so M is infinite type and according to our resultsM is infinite type and Figure
3 show that.

(a) Surface M (b) The pedal surface M

u ∈ ]0, 3], v ∈ [0.5, π]

Figure 3. The pedal of revolution surfaces of rational kind
of Case (i)

Case (ii). if b > a

Lemma 4.2. If b > a, then, for any i ≥ 1, we have

(51) ri − qi = (2i− 1)(q − r).

Proof. From Eqs. (36), (38), and (44) we get

r = 2(a+b)−1, q = 4b, r1 = 7q+2r−2, q1 = 6q+3r−2, deg η = 3q+r−1.

Thus, Eq. (51) holds for i = 1. Assume Eq. (51) holds for some i ≥ 1. Therefore,
from above and Eqs. (46) we get

(52) ri+1 = 2qi + ri + 8q + 2r − 2, qi+1 = 3qi + 4r + 6q − 2.
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This implies ri+1 − qi+1 = (2i+ 1)(q − r) > 0. �

Using above Lemma and Eq. (48) we can conclude that Case (ii) is impos-
sible.

Here, we will provide an example to support our result.

Example 4.2. Let A(u) = u 2 − u + 2 and B(u) = 3u5 − 7u4 + u 2 − 2u − 3
where u 6= 2.35667. Then

r = 13, q = 20, deg η = 72, r1 = 164, q1 = 157, ri+1 = 2qi + ri + 184,

qi+1 = 3qi + 170, ∀ i.
Substituting the above values in Eq. (48) will obtain the surface of infinite type
where the origin surface is infinite type as shown in Figure 4.

(a) Surface M (b) The pedal surface M

u ∈ [0.1, 2], v ∈ [π, 2π]

Figure 4. The pedal of revolution surfaces of rational kind
of Case (ii)

Case (iii). if a = b

Let m = deg(A+B). We divide this case into three subcases:

Case (iii-a). if a = b = m. Without loss of generality, we may assume the
leading coefficient of B(u) is 1.

Lemma 4.3. Assume a = b = m. Then we get

(53) ri − qi ≤ 2(2i− 1) + s, ∀ i,
where s is a positive integer.

Proof. Since a = b = m, we have

r ≤ 4m− 2, q = 4m, deg η ≤ 16m− 4, q1 ≤ 36m− 10, r1 ≤ 36m− 8.

Let s = 36m− 10− q1 ≥ 0. Thus, (53) holds for i = 1. Assume (53) holds for
some i ≥ 1. Therefore, from above and Eqs. (46) we get

(54) ri+1 ≤ 2qi + ri + 40m− 8, qi+1 = 3qi + 40m− 12− s.

This implies ri+1 − qi+1 ≤ 2(2i+ 1) + s. �
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Also, we have a lot of possibilities, such as Case (i).
The following example gives illustrate the previous case.

Example 4.3. Let A(u) = 3u3+u−1 and B(u) = u3+u 2−7u+5 6= 0. Then

r = 10, q = 12, deg η = 44, r1 = 100, q1 = 98,

ri+1 = 2qi + ri + 112, qi+1 = 3qi + 108, ∀ i.
Making these values in Eq. (48) and taking some properties we get

• If j = 1 ⇒ D R2

Q2

+ d1 D
R1

Q1

= 0, the resulting equation from degree
506.

• If j = 2 ⇒ D R3

Q3

+ d1 D
R2

Q2

+ d2 D
R1

Q1

= 0, too, this equation has

degree 1824.

And these cases lead to contradiction. See Figure 5.

(a) Surface M (b) The pedal surface M

u ∈ [−1, 0.99], v ∈ [0, 2π]

Figure 5. The pedal of revolution surfaces of rational kind
of Case (iii-a)

Case (iii-b). if a = b = m+ 1. Let

(55) A = −ua + E(u) and B = ua + L(u),

where E(u) and L(u) are polynomials of degree ≤ a− 1 = m. In this case we
get the same result as in Case (iii-a).

This is an example of the above case.

Example 4.4. Let A(u) = −u4 + u 2 + 4 and B(u) = u4 + 3u 2 − u + 1 6= 0.
Then

r = 13, q = 16, deg η = 58, r1 = 132, q1 = 129, ri+1 = 2qi + ri + 148,

qi+1 = 3qi + 142, ∀ i,
and put these values in Eq. (48) we find
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• If j = 1 ⇒ D R2

Q2

+ d1 D
R1

Q1

= 0, the resulting equation from degree
667.

• If j = 2 ⇒ D R3

Q3

+ d1 D
R2

Q2

+ d2 D
R1

Q1

= 0, and this equation has

degree 2402.

Also here, we got a contradiction as in the previous cases as shown in Figure
6.

(a) Surface M (b) The pedal surface M

u ∈ [0.5π, 2π], v ∈ [0, 2π]

Figure 6. The pedal of revolution surfaces of rational kind
of Case (iii-b)

Case (iii-c). if a = b > m+ 1. In this case we may put

(56) A = −um+1 W (u) + E(u), and B = um+1 W (u) + L(u),

whereW (u) is a polynomial of degree a−m−1 and E(u), L(u) are polynomials
of degree ≤ m such that deg(E + L) = m. Therefore, we give the following
lemma.

Lemma 4.4. Assume a = b > m+ 1. Then we get

(57) ri − qi ≤ 2(2i− 1)(a−m) + 2i− 1 + s, ∀ i,
where s is a positive integer.

Proof. From Eqs. (36), (38), (40), and (44) we obtain

q = 4a, r ≤ 2a+ 2m− 1, deg η ≤ 4(4a− 1), q1 ≤ 34a+ 2m− 9, r1 ≤ 36a− 8.

Let s = 34a+ 2m− 9− q1 ≥ 0. Thus, (57) holds for i = 1. Assume (57) holds
for some i ≥ 1. Therefore, from above and Eqs. (46) we get

(58) ri+1 ≤ 2qi + ri + 40a− 8, qi+1 = 3qi + 36a+ 4m− 10− s.

This implies ri+1 − qi+1 ≤ 2(2i+ 1)(a−m) + 2i+ 1 + s. �

From Lemma we can not determine the type of these surfaces where there
are many possibilities. Therefore we give the following example to illustrate
this Lemma.



924 M. ABDELATIF, H. NOUR ALLDEEN, H. SAOUD, AND S. SUORYA

Example 4.5. Let A(u) = −u4−3u 2+u+1 and B(u) = u4+3u 2−3u−7 6= 0,
where m = 1. Then

r = 12, q = 16, deg η = 56, r1 = 128, q1 = 124,

ri+1 = 2qi + ri + 144, qi+1 = 3qi + 136, ∀ i.
Substituting these values in Eq. (48) and we give some cases.

• If j = 1 ⇒ D R2

Q2

+d1D
R1

Q1

= 0. The result equation from degree 644.

• If j = 2 ⇒ D R3

Q3

+ d1 D
R2

Q2

+ d2 D
R1

Q1

= 0. This equation has degree
2312.

Note whenever j increases the degree of Eq. (48) is increasing very signifi-
cantly and this gives a contradiction. Figure 7 shows that.

(a) Surface M (b) The pedal surface M

u ∈ [2, 4], v ∈ [π, 2π]

Figure 7. The pedal of revolution surfaces of rational kind
of Case (iii-c)

According the above result in Case (ii), we can deduce the following.

Theorem 4.1. Let M be a revolution surface of rational kind, for which degree

of denominator larger than the degree of the numerator, has the pedal surfaces

M of infinite type.

5. Special revolution surfaces

In the final section, we give two examples sphere and catenoid in E3 to
show the property of finite type is not a characterize inherited by the pedal
transformation .

5.1. The pedal of sphere

First, we take the surface of sphere S2
1 which has the position vector as

follows

(59) X(u, v) = {r sinu cos v , r sinu sin v , r cosu},



FINITE TYPE OF THE PEDAL OF REVOLUTION SURFACES IN E3 925

where the unit normal vector filed of S2
1 is given by

G = {sinu cos v , sin v sinu , cosu}.
As we know, by a direct computation, we find

∆ =
−1

r 2

( ∂2

∂u 2
+ cotu

∂

∂u
+ csc2 u

∂2

∂v 2

)

,

and this leads to

∆X =
2

r 2
X.

That is, X is 1-type where λ = 2
r 2 . From Eqs. (15) and (59) one can see that

the pedal of sphere is itself, i.e., X = X.

Corollary 5.1. The pedal of sphere preserves the property of finite type.

5.2. The pedal of catenoid

Second, we will give the catenoid surface M which the position vector of it
is defined by

X(u, v) = {r coshu cos v , r coshu sin v , r u},
and

G = {−sechu cos v , −sechu sin v , tanhu}.
Based on Eq. (6), we have

(60) ∆X = {0 , 0 , 0}.
That is X is 1-type (whereas catenoid is minimal surface).

Depending on Eq. (15) we find the parametric representation of the pedal
surface M of catenoid surface as in the following.

X = r (1− u tanhu)
{

sech u cos v, sech u sin v, − tanhu
}

.

Consequently

G =
1√

2
√
2u 2 + cosh 2u+ 1

{

sech u cos v (cosh 2u+ 4u tanhu− 3) ,

sech u sin v (cosh 2u+ 4u tanhu− 3) , 2(−u+ 2 tanhu+ 2u sech2 u)
}

.

Thus, we obtain

∆ = − 1

r2 ǫ2 ξ2

(

(

u3 ǫ sech4 u− (u2 + 2) tanh u+ 3u

+ u (3u tanh u− 5) sech2 u
) ∂

∂u
+ ǫ2 ξ

∂2

∂u 2
+ ξ2 cosh2 u

∂2

∂v 2

)

,(61)

where ǫ = u tanhu − 1, and ξ = u 2 sech2 u + 1. Therefore, we take X3, the
third component function of X.

(62) X3 = r tanhu (u tanhu− 1).
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Then, by some calculations, we find

∆ X3 =
P1(tanhu , sech u)

r u ξ2
+
Q1(sech u)

r u ǫ ξ2
,

where, P1 is polynomial of two variables and Q1 is polynomial of one variable
with coefficients given by some functions of u. Consequently, by using above
equation and Eq. (61) we obtain

∆
2
X3 =

P2(sech u)

r 3 u ǫ3 ξ5
+
Q2(sech u)

r 3 u ǫ2 ξ5
.

Then, by induction we find that

∆
j
X3 =

Pj(sech u)

r 2j−1 u ǫ2j−1 ξ3j−1
+

Qj(sech u)

r 2j−1 u ǫ2j−2 ξ3j−1
.

Assume the pedal of catenoid is of finite type, then by Eq. (11), we get

Pj+1(sechu)

r 2j+1 u ǫ2j+1 ξ3j+2 +
Qj+1(sech u)

r 2j+1 u ǫ2j ξ3j+2 + d1

( Pj(sech u)

r 2j−1 u ǫ2j−1 ξ3j−1 +

Qj(sech u)

r 2j−1 u ǫ2j−2 ξ3j−1

)

+ · · ·+ dj

(P1(tanhu , sech u)

r u ξ2
+
Q1(sech u)

r u ǫ ξ2

)

= 0.

Simplification of the previous equation, we get

Pj+1(sech u)

ǫ
+Q(tanhu, sech u) = 0,

where Q(tanhu , sech u) is a polynomial of two variables. Above equation
becomes as

Pj+1(sech u)

ǫ
= −Q(tanhu , sech u), ǫ 6= 1,

and, this is impossible for j ≥ 1 because the left hand rational function. See
Figure 8.

Note: ǫ 6= 1 this means, u 6= ±2.06533813897470472807. And thus, we get:

(a) Catenoid (b) The pedal of catenoid

Figure 8. The pedal of catenoid; u ∈ [−2, 2], v ∈ [0, 2π]

Corollary 5.2. The pedal of catenoid does not preserve the property of finite

type.

Therefore, we conclude the following theorem.
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Theorem 5.1. The pedal transformation does not necessarily preserve the

property of finite type for surfaces.

6. Conclusion

The pedal of revolution surfaces of polynomial and rational kind are rev-
olution surfaces. Also, the pedal of revolution surfaces of polynomial kind
are infinite type. Furthermore, the revolution surfaces of rational kind which
have degree of denominator larger than the degree of the numerator has the
pedal surfaces of infinite type. Finally, we find the pedal of surfaces does not
necessarily have the same finite type as in the original surface.
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