DOI QR코드

DOI QR Code

A Intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis

이론해와 수치해석적 검토를 통한 쉴드TBM 막장압 산정 결과 상호비교

  • 전기찬 (대한건설이엔지 기술연구소) ;
  • 김동현 (대한건설이엔지 기술연구소)
  • Received : 2016.03.11
  • Accepted : 2016.04.29
  • Published : 2016.05.31

Abstract

This study estimates tunnel face pressure through existing 8 analytical equations and 3D numerical analysis, and compares and examines it. In general, the estimating tunnel face pressure of domestic shield TBM has been examined by a method according to analytical equation and empirical method, but numerical analysis is combined in a section passing complicated stratigraphic condition and special soil condition. Therefore, the researcher is to find a reliable method to examine of tunnel face pressure by confirming a correlation between tunnel face pressure estimated by equation and tunnel face pressure estimated by numerical analysis program. When tunnel face pressure is estimated, both analytical equation and numerical analysis were identically examined in soil conditions such as sandy soil and cohesive soil. In addition, existing analytical equation is used as equation, and 3D analysis copying construction process and shield tunnel as numerical analysis.

본 연구에서는 기존에 제안된 8가지의 이론식과 3차원 수치해석으로 막장압을 산정하여 비교 검토하였다. 일반적으로 국내 쉴드TBM의 막장압 산정은 이론식과 경험에 따른 방법으로 검토되고 있는 실정이나 복잡한 지층조건, 특수한 지반조건을 통과하는 구간에 대해서는 수치해석을 병행하고 있다. 따라서 이론식으로 산정된 막장압과 수치해석 프로그램에서 산정되는 막장압의 상관관계를 확인하여 막장압의 신뢰성 있는 검토방법을 찾고자 하였다. 막장압 산정시 이론식과 수치해석 모두 사질토와 점성토 지반조건에서 동일하게 검토하였으며, 이론식은 기존에 제안된 식을 사용하였고 수치해석은 쉴드터널의 시공과정을 모사한 3차원 해석을 수행하였다.

Keywords

References

  1. Anagnostou, G., Kovari, K. (1994), "The face stability of slurry-shield-driven tunnels. tunneling and underground space technology", Vol. 9, No. 2, pp. 165-174. https://doi.org/10.1016/0886-7798(94)90028-0
  2. Anagnostou, G., Kovari, K. (1996), "Face stability in slurry and EPB shield tunneling", In Mair and Taylor, pp. 453-458.
  3. Broere, W. (2001), "Tunnel face stability & new CPT applications", p. 68.
  4. Broms, B.B., Bennermark, H. (1967), "Stability of clay at vertical openings", Journal of the Soil Mechanics and Foundations Division, Vol. 93, No. 1, pp. 71-94.
  5. Davis, E.H., Gunn, M.J., Mair, R.J., Seneviratne, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, Vol. 30, No. 4, pp. 397-416. https://doi.org/10.1680/geot.1980.30.4.397
  6. Fujita, K., Kusakabe. (1995), "Underground construction in soft ground", Rotterdam, Balkema.
  7. Jancsecz, S., Steiner, W. (1994), "Face support for a large mix-shield in heterogenous ground conditions", In Tunneling '94, London, Institution of Mining and Metallurgy.
  8. Kanayasu, S., Kubota, I., Shikibu, N. (1995), "Stability of face during shield tunneling - A survey of Japanese shield tunneling", In Fujita and Kusakabe, pp. 337-343.
  9. Krause, T. (1987), "Schildvortrieb mit flussigkeits-und erdgestutzter ortsbrust", PhD thesis, Technischen Universitat Carolo-Wilhelmina, Braunschweig.
  10. Mair, R.J., Taylor, R.N. (1996), "Geotechnical aspects of underground construction in soft ground", Rotterdam, Balkema.
  11. Seven Moller (2006), "Tunnel induced settlements and structural forces in linings", pp. 108-125.
  12. Vittorio Guglielmetti, Piergiorgio, Ashraf Mahtab & Shulin Xu (2008), "Mechanized tunnelling in urban areas", pp. 391-402.