DOI QR코드

DOI QR Code

A probabilistic assessment of ground condition prediction ahead of TBM tunnels combining each geophysical prediction method

TBM 현장에서 막장전방 예측기법 결과의 확률론적 분석을 통한 지반상태 평가

  • Lee, Kang-Hyun (Korea Expressway Corporation Research Institute) ;
  • Seo, Hyung-Joon (Department of Engineering, University of Cambridge) ;
  • Park, Jeongjun (Korea Railroad Research Institute) ;
  • Park, Jinho (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, In-Mo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 이강현 (한국도로공사 도로교통연구원) ;
  • 서형준 (케임브리지대학교 공과대학) ;
  • 박정준 (한국철도기술연구원) ;
  • 박진호 (고려대학교 건축사회환경공학부) ;
  • 이인모 (고려대학교 건축사회환경공학부)
  • Received : 2016.02.16
  • Accepted : 2016.05.27
  • Published : 2016.05.31

Abstract

It is usually not an easy task to counter-measure on time and appropriately when confronting with troubles in mechanized tunnelling job-sites because of the limitation of available spaces to perform those actions with the existence of disk cutter, cutter head, chamber and other various apparatus in Tunnel Boring Machine (TBM). So, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation. Efforts have been made to utilize geophysical methods such as elastic wave survey, electromagnetic wave survey, electrical resistivity survey, etc for predicting the ground condition ahead of the TBM tunnel face. Each prediction method among these geophysical methods has its own advantage and disadvantage. Therefore, it might be needed to apply several geophysical methods rather than just one to predict the ground condition ahead of the tunnel face in the complex and/or mixed grounds since those methods will compensate among others. The problem is that each prediction method will give us different answer on the predicted ground condition; how to combine different solutions into a most reasonable and representative predicted value might be important. Therefore, in this study, we proposed a methodology how to systematically combine each prediction method utilizing probabilistic analysis as well as analytic hierarchy process. The proposed methods is applied to a virtual job site to confirm the applicability of the model to predict the ground condition ahead of the tunnel face in the mechanized tunnelling.

TBM으로 터널 시공 중 막장면에서 갑작스럽게 문제가 발생하는 경우 공간적인 제한 때문에 NATM공법으로 시공되는 터널에 비해서 적절한 대처를 하기가 어렵다. TBM으로 터널 시공 중에 막장전방의 지반상태를 예측하는 것은 매우 중요하기 때문에 탄성파, 전자기파 등을 이용하여 TBM 면판 전방의 지반상태를 예측하는 연구 및 기술개발이 이루어졌다. 대부분의 TBM 현장에서는 공사기간 및 비용을 고려하여 1개의 막장전방 예측기법을 적용한다. 그러나 막장전방 예측기법의 종류에 따라서 탐사심도, 적용 가능한 지질조건, 예측할 수 있는 대상, 예측 정확도 등이 다르다. 복합적인 지질조건에 위치한 TBM 터널 시공 시에는 여러 가지 막장전방 예측기법을 적용하는 것이 막장 전방의 지질 조건을 정확하게 예측할 수 있을 것으로 판단된다. 여러 가지 막장전방 예측기법을 동시에 적용하였을 경우 각각의 기법으로부터 얻어진 지반상태는 다른 결과를 나타낼 수 있다. 따라서 본 연구에서는 각각의 막장전방 예측기법으로부터 얻어진 막장전방의 지반상태를 종합적으로 평가하기 위한 방법을 제안하였다. 확률론적 분석과 계층분석기법을 이용하여 막장전방의 지반 상태를 종합적으로 평가할 수 있는 통합 모델을 제시하였다. 또한 본 연구에서 제안한 모델을 가상의 지반에 적용하여, 종합적으로 지반 상태를 평가할 수 있음을 확인하였다.

Keywords

References

  1. Ahn, H.Y., Jeong, J.H., Cho, I.K., Kim, J.H., Bae, G.J. (2008), "Application of resistivity monitoring with tunnel excavation area", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 4, pp. 405-420.
  2. Ang, A.H-S., Tang, W.H. (1975), "Probability concepts in engineering planning and design", John & Wiley Sons, New York, US.
  3. Barlow, R.E. (1984), "The bayesian approach in risk analysis", Probabilistic Engineering Mechanics, Vol. 1, Issue. 2, pp. 113-115. https://doi.org/10.1016/0266-8920(86)90034-2
  4. Choi, J.H., Jo, C.H., Ryu, D.W., Kim, H., Oh, B.S., Kang, M.G., Suh, B.S. (2003), "A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping", Journal of Korean Society for Rock Mechanics, Vol. 13, No. 4, pp. 279-286.
  5. Dowden, P.B., Robinson, R.A. (2001), "Coping with boulders in soft ground TBM tunneling", Rapid Excavation and Tunneling Conference, Littleton, US, pp. 961-977.
  6. Kahraman, S., Balci, C., Yazici, S, Bilgin, N. (2000), "Prediction of the penetration rate of rotary blast hole drills using a new drillability index", International Journal of Rock Mechanics and Mining Science, Vol. 37, Issue. 5, pp. 729-743. https://doi.org/10.1016/S1365-1609(00)00007-1
  7. Kaus, A., Boening, W. (2008), "BEAM-geoelectrical ahead monitoring for TBM-drives", Geomechanics and Tunnelling, Vol. 1, No. 5, pp. 442-449. https://doi.org/10.1002/geot.200800048
  8. Kim, K.S., Kim, J.H., Jeong, L.C., Lee, I.M., Cho, G.C. (2015), "Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 393-401. https://doi.org/10.9711/KTAJ.2015.17.3.393
  9. Kim, N.Y., Kim, S.H., Chung, H.S. (2001), "Correlation between drilling parameter and tunnel support pattern using jumbo drill", Journal of Korean Tunnelling and Underground Space Association, Vol. 3, No. 14, pp. 17-24.
  10. Kneib, G., Kasselm, A., Lorenz K. (2000), "Automatic seismic prediction ahead of the tunnel boring machine", First Break, Vol. 18, Issue. 7, pp. 295-302. https://doi.org/10.1046/j.1365-2397.2000.00079.x
  11. Kwon, H.S., Synn, J.H., Hwang, S.H., Baek, H.J., Kim, K.S., Kim, J.S. (2001), "A study on the correlation of resistivity and rock quality", Proceedings of Korean Geotechnical Society, Bundang, pp. 81-88.
  12. Kwon, H.S., Hwang, S., Baek, H., Kim, K.S. (2008), "A study on the correlation between electrical resistivity and rock classsification", Geophysics and Geophysical Exploration, Vol. 11, No. 4, pp. 350-360.
  13. Lee, K.H., Seo, H.J., Park, J.H., Ahn, H.Y., Kim, K.S., Lee, I.M., (2012), "A study on correlation between electircal resistivity obtained from electrical resistivity logging and rock mass rating in-situ tunnelling site", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 5, pp. 503-516. https://doi.org/10.9711/KTAJ.2012.14.5.503
  14. Lee, K.H. (2014), "Predictions of ground conditions ahead of tunnel face applicable to TBM", Ph.D. Dissertation, Korea University.
  15. Moon, S., Kwon, K. (2007), "Modification of activity duration for construction scheduling using triangular distribution", Proceedings of Korean Society of Civil Engineers, Daegu, pp. 3282-3285.
  16. O, S.D., Kim, Y.S. (2000), "A study on the cost risk analysis model using the triangular distribution", Proceedings of Architectural Institute of Korea, Vol. 20, No. 2, Gwangju, pp. 675-678.
  17. Richter, T. (2011), "Innovative geophysical investigation technology in karstified and fractured rock formations", 1st Scientific Congress on Tunnels and Underground Structures in South-East Europe, Dubrovnik, Croatia, pp. 20-21.
  18. Ryu, H.H. (2010), "Development of a tunnel electrical resistivity prospecting system and its application", Ph.D. Dissertation, Korea Advanced Institute of Science and Technology.
  19. Saaty, T.L. (1980), "The analytic hierarchy process", McGraw-Hill, New York, US.
  20. Teale, R. (1965), "The concept of specific energy in rock drilling", International Journal of Rock Mechanics and Mining Science, Vol. 2, Issue. 1, pp. 57-73. https://doi.org/10.1016/0148-9062(65)90022-7
  21. Wu, T.H., Lee, I.M., Potter, J.C., Kjekstad, O. (1987), "Uncertainties in evaluation of strength of marine sand", Journal of Geotechnical Engineering, Vol. 113, No. 7, pp. 719-738. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:7(719)
  22. You, K.H., Lee, S.H., Choo, S.Y., Jue, K.S. (2004), "A study on the estimation of rock mass classes using the information off a tunnel center line", Journal of Korean Tunnelling and Underground Space Association, Vol. 6, No. 2, pp. 101-111.