DOI QR코드

DOI QR Code

Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor

  • Choi, Dongcheol (Department of Chemistry, Incheon National University) ;
  • Kim, Kyuwon (Department of Chemistry, Incheon National University)
  • Received : 2015.08.19
  • Accepted : 2016.01.17
  • Published : 2016.04.30

Abstract

Keywords

References

  1. Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong CP. Superior capacitance of functionalized graphene. J Phys Chem C, 115, 7120 (2011). http://dx.doi.org/10.1021/jp2007073.
  2. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W. Supercapacitor performances of thermally reduced graphene oxide. J Power Sources, 198, 423 (2012). http://dx.doi.org/10.1016/j.jpowsour.2011.09.074.
  3. Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 45, 2483 (2000). http://dx.doi.org/10.1016/s0013-4686(00)00354-6.
  4. Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization. J Power Sources, 112, 236 (2002). http://dx.doi.org/10.1016/s0378-7753(02)00364-6.
  5. Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 91, 37 (2000). http://dx.doi.org/10.1016/s0378-7753(00)00485-7.
  6. Halper MS, Ellenbogen JC. Supercapacitors: A Brief Overview, The MITRE Corporation, McLean, VA (2006).
  7. Conway BE. Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage. J Electrochem Soc, 138, 1539 (1991). http://dx.doi.org/10.1149/1.2085829.
  8. Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources, 66, 1 (1997). http://dx.doi.org/10.1016/s0378-7753(96)02474-3.
  9. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y.
  10. Pumera M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec, 9, 211 (2009). http://dx.doi.org/10.1002/tcr.200900008.
  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  12. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  13. Lv W, Xia Z, Wu S, Tao Y, Jin FM, Li B, Du H, Zhu ZP, Yang QH, Kang F. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface. J Mater Chem, 21, 3359 (2011). http://dx.doi.org/10.1039/c0jm02852e.
  14. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.
  15. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.
  16. Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun, 1, 73 (2010). http://dx.doi.org/10.1038/ncomms1067.
  17. Ge J, Yao HB, Hu W, Yu XF, Yan YX, Mao LB, Li HH, Li SS, Yu SH. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy, 2, 505 (2013). http://dx.doi.org/10.1016/j.nanoen.2012.12.002.
  18. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. High-performance nanostructured supercapacitors on a sponge. Nano Lett, 11, 5165 (2011). http://dx.doi.org/10.1021/nl2023433.
  19. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. Acs Nano, 5, 8904 (2011). http://dx.doi.org/10.1021/nn203085j.
  20. Wu Q, Xu Y, Yao Z, Liu A, Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. Acs Nano, 4, 1963 (2010). http://dx.doi.org/10.1021/nn1000035.
  21. Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25, 5957 (2009). http://dx.doi.org/10.1021/la804216z.
  22. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). http://dx.doi.org/10.1002/adma.200801306.
  23. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J, 15, 6116 (2009). http://dx.doi.org/10.1002/chem.200900596.
  24. Meng Y, Wang K, Zhang Y, Wei Z. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater, 25, 6985 (2013). http://dx.doi.org/10.1002/adma.201303529.
  25. Wang H, Hao Q, Yang X, Lu L, Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2, 2164 (2010). http://dx.doi.org/10.1039/c0nr00224k.
  26. Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater, 24, 2489 (2014). http://dx.doi.org/10.1002/adfm.201303282.