DOI QR코드

DOI QR Code

Evaluation of Vacutainer Distribution Conditions

진공채혈관의 상태에 따른 평가

  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Namseoul University)
  • 박창은 (남서울대학교 임상병리학과)
  • Received : 2016.04.28
  • Accepted : 2016.05.16
  • Published : 2016.06.30

Abstract

Pre-analytical variables account for most laboratory errors and many factors affect the results from a patient. Type of tubes facilitated rapid separation and prevented hemolysis upon prolonged storage. However, there were some limitations associated with vacutainer conditions. To circumvent the problems, the comparability of complete blood cell count values was examined using various vacutainers. The results of the analysis showed a large coefficient variation of 0.24, 0.21 in the value of white blood cells and platelets, and significant correlation was observed between white blood cells, platelets, and the value of red blood cells (p<0.01). In each of the three tubes, compared to the value of platelets, white blood cells, the greatest coefficient variation was 0.27, 0.21. In correlation of the three companies, significant difference was observed in values of white blood cells, platelets, and platelet distribution width (p<0.01), however G and B, the value of platelets, and platelet distribution width were significantly lower (p<0.05). In conclusion, analysis of vacutainers showed that they were suitable for stability of these analytes under vacutainer conditions.

분석전 변이로 인하여 검사실은 오류에 직면하게 되고 많은 요인들은 환자의 검사결과에 영향을 미치게 된다. 다양한 진공채혈관은 신속하게 분리하고 방치된 검체의 용혈을 방지한다. 그러나 진공채혈관의 상태에 따라 몇 가지 제한점들이 발생하는데 이러한 문제점을 알아보기 위해 다양한 진공채혈관을 이용해 혈구산정검사로 비교 평가하였다. 유통기한별 검사결과에서는 백혈구(WBC)와 혈소판(PLT)의 값에서 0.24, 0.21로 큰 변이계수를 나타냈고 상관성에서는 백혈구(WBC), 혈소판(PLT), 적혈구(RBC)의 값이 유의성을 보였다(p<0.01). 한편 각 3사의 비교평가에서는 백혈구(WBC), 혈소판(PLT)의 값에서 0.27, 0.21로 가장 큰 변이계수를 나타냈고, 상관성에서는 각 3사가 모두 백혈구(WBC), 혈소판(PLT), 혈소판분포폭(PDW)의 값에서 높은 유의한 차이를 보였다(p<0.01) 그러나 G사와 B사는 혈소판(PLT), 혈소판분포폭(PDW)의 값에서는 낮은 유의한 차이를 보였다(p<0.05). 결론적으로 진공채혈관의 상태에 따른 분석의 안정성을 위해 적절한 진공채혈관의 분석평가가 이루어져야 한다.

Keywords

References

  1. NCCLS. Procedures for the handling and processing of blood specimens; Approved guideline-second editions. NCCLS document H18-A2. Wayne, Pennsylvania: National Committee for Clinical Laboratory Standards; 1999.
  2. CLSI. Validation and verification of tubes for venous and capillary blood specimen collection; Approved guideline. CLSI document GP34-A. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2010.
  3. CLSI. Method comparison and bias estimation using patient samples; Approved guideline-second edition (interim revision). CLSI document EP09-A2-IR. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2010.
  4. Li Z, Feng Z, Yan C, Yan R. Evaluation of BD Vacutainer $SST^{TM}$ II plus tubes for common tumor marker tests by Roche Diagnostics Modular E 170 analyzer. J Clin Lab Anal. 2010;24(6):418-421. https://doi.org/10.1002/jcla.20422
  5. Won EJ, Shin MG, Jang MJ, Cho D, Kee SJ, Kim SH. et al. Comparison between V-Tubes and BD Vacutainer tubes for use in laboratory tests. Lab Med Online. 2012:3(3):145-154. https://doi.org/10.3343/lmo.2013.3.3.145
  6. Lee JH, Cha YJ, Lee DS, Kim SY. A comparison of the performance of Soyagreentec Ampulab EDTA and sodium citrate tubes with that of BD vacutainer tubes. Lab Med Online. 2015:5(2):92-100. https://doi.org/10.3343/lmo.2015.5.2.92
  7. Hong SB, Kim JS, Shin KS. The effect of the storage duration and temperature of EDTA Specimen for CBC and WBC differential count in SE-9000 automated cell counter. Korean J Clin Lab Sci. 2006;38:147-151.
  8. Lim YK, Kim CH, Kang YH, Park CJ, Chi HS. IMI channel and HPC mode evaluation in CBC autoanalyzer SE-9000. Korean J Clin Lab Sci. 2000;32:48-52.
  9. Bowen RA, Hortin GL, Csako G, Otanez OH, Remaley AT. Impact of blood collection devices on clinical chemistry assays. Clin Biochem. 2010;43:4-25. https://doi.org/10.1016/j.clinbiochem.2009.10.001
  10. CLSI. Tubes and additives for venous blood specimen collection; Approved standard-fifth edition. CLSI document H1-A5. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2003.
  11. Li Z, Yan C, Yan R, Zheng X, Feng Z. Evaluation of BD Vacutainer SSTTM II plus tubes for special protein testing. J Clin Lab Anal. 2011;25(3):203-206. https://doi.org/10.1002/jcla.20458
  12. Drake SK, Bowen RA, Remaley AT, Hortin GL. Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin Chem. 2004;50(12):2398-401. https://doi.org/10.1373/clinchem.2004.040303
  13. CLSI. Collection, transport, and processing of blood specimens for testing plasma-based coagulation assays and molecular hemostasis assays; Approved guideline-fifth edition. CLSI Document H21-A5. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2008.
  14. Kocijancic M, Cargonja J, Delic-Knezevic A. Evaluation of the BD Vacutainer((R)) RST blood collection tube for routine chemistry analytes: clinical significance of differences and stability study. Biochem Med (Zagreb). 2014;24(3):368-375. https://doi.org/10.11613/BM.2014.039
  15. Ricos C, Alvarez V, Cava F, Garcia-Lario JV, Hernandez A, Jimenez CV. et al. Current databases on biologic variation: pros, cons and progress. Scand J Clin Lab Invest. 1999;59(7):491-500. https://doi.org/10.1080/00365519950185229