DOI QR코드

DOI QR Code

폴리나이트로젠 에너지물질

Polynigrogen Energetic Materials

  • 이준웅 (한국과학기술정보연구원, ReSEAT 사업팀)
  • Lee, Junwung (ReSEAT Team, Korea Institute of Science and Technology Information)
  • 투고 : 2015.10.07
  • 심사 : 2016.04.29
  • 발행 : 2016.06.05

초록

Current research trends of prediction of possible structures, synthesis and explosive characteristics of polynitrogen molecules(PNs) are reviewed. Theoretically PNs are composed only of nitrogen atoms, in which N-N bonds are either single or double bonds, and thus when these molecules decompose, release of enormous energy is accompanied. From the middle of 20th century energetic material chemists have been seeking possible structures and the methods of synthesis of these new materials. As a results, from $N_4$ to $N_{60}$ together with their ions are predicted, and experimental chemists have been trying to synthesize these materials with a few success, including the famous ${N_5}^+$ ion in 1999. Although experimental successes are very rare beyond $N_5$ until today, the author believes that renovative ideas together with sincere efforts will bring someday next generation of high energy materials such as nitrogen fullerene($N_{60}$) in reality.

키워드

참고문헌

  1. Lee, J. W., J. of the Korea Institute of Military Sci. and Tech., 6(3), 86-102, 2003.
  2. Rutherford, D., "De Aero Fixo Ant Mephitic(On Air Said to be Fixed or Mephitic)," MD thesis, University of Edinburgh, 1772.
  3. Curtius, T., Berichte Dtsch. Chem. Ges., 23, 3023-3033, 1890. https://doi.org/10.1002/cber.189002302232
  4. Christe, K. O. et al., Angew. Chemie, Int. Ed., 38(13/14), 2004-2009, 1999. https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7
  5. "Discovery of New Polynitrogen May Open Door to a New Class of Chemical Propellants," Dec 01-AFRL Horizons, http://www.hobbyspace.com/Links/
  6. Samartzis P. C. and Wodtke, A. M., Int. Rev. in Phys. Chem., 25(4), 527-52, 2006. https://doi.org/10.1080/01442350600879319
  7. Engelke R. and Stine, J. R., J. Phys. Chem., 94, 5689-5694, 1990. https://doi.org/10.1021/j100378a018
  8. Manaa, M. R., Chem. Phys. Lett., 331(2-4), 262-268, 2000. https://doi.org/10.1016/S0009-2614(00)01164-7
  9. Thrush, B. A., Proc. Roy. Soc. London, Ser. A: Math. Phys. Sci., 235, 143-147, 1956. https://doi.org/10.1098/rspa.1956.0071
  10. Martin, J. M. L., et al., J. Chem. Phys., 90(11), 469-485, 1989.
  11. Wasilewski, J., J. Chem. Phys., 105(24), 10969-10982, 1996. https://doi.org/10.1063/1.472865
  12. Martin, J. M. L. et al., J. Chem. Phys., 93(6), 4485-4486 1990. https://doi.org/10.1063/1.458686
  13. Zhang, P. et al., J. Chem. Phys., 122, 014106, 2005. https://doi.org/10.1063/1.1804497
  14. Byun, Y. G. et al., J. Am. Chem. Soc., 113, 3689-3696, 1991. https://doi.org/10.1021/ja00010a009
  15. Tarroni, R. and Tosi, P., Chem. Phys. Lett., 389, 274-278, 2004. https://doi.org/10.1016/j.cplett.2004.03.101
  16. Cai, Z. L. et al., Chem. Phys., 164, 377-381, 1992. https://doi.org/10.1016/0301-0104(92)87075-K
  17. Zarko, V. E., Combustion, Explosion, and Shock Waves, 46(2), 121-131, 2010. https://doi.org/10.1007/s10573-010-0020-x
  18. Carnovale, F. J. et al., J. Chem. Phys., 88(2), 642-650, 1988. https://doi.org/10.1063/1.454192
  19. McKnight, L. G. et al., Phys. Rev., 164, 62-70, 1967. https://doi.org/10.1103/PhysRev.164.62
  20. Francl, M. M. and Chesick, J. P., J. Phys. Chem., 94, 526-528, 1990. https://doi.org/10.1021/j100365a008
  21. Bittererova, M. et al., J. Phys. Chem. A, 104(51), 11999-12005, 2005, 2000. https://doi.org/10.1021/jp002651n
  22. Pyykko P. and Runeberg, N., J. Mol. Struct. Theochem., 234, 279-290, 1991. https://doi.org/10.1016/0166-1280(91)89018-V
  23. Nguyen M. T. and Ha, T. K., Chem. Phys. Lett., 317, 135-141, 2000. https://doi.org/10.1016/S0009-2614(99)01320-2
  24. Dixon, D. A. and Christe, K. O. et al. J. Am. Chem. Soc., 126(3), 834-843, 2004. https://doi.org/10.1021/ja0303182
  25. Wang, X. et al., Chem. Phys. Lett., 329, 483-489, 2000. https://doi.org/10.1016/S0009-2614(00)01071-X
  26. Glukhovtsev, M. N., et al., Inorg. Chem., 35, 7124-7133, 19960 https://doi.org/10.1021/ic9606237
  27. Gagliardi, L., et al., J. Chem. Phys., 114(24), p10733, 2001. https://doi.org/10.1063/1.1370063
  28. Nguyen, M. T. et al., Chem. Phys. Lett., 335, 311-320, 2001. https://doi.org/10.1016/S0009-2614(01)00037-9
  29. Li, Q. S. and Liu, Y. D., J. Phys. Chem. A, 106, 9538-9542, 2002. https://doi.org/10.1021/jp0258917
  30. Engelke, R., J. Org. Chem., 96, 10789-10792, 1992.
  31. Engelke, R., J. Org. Chem., 93, 5722-5727, 1989.
  32. Michels, H. H., et al., J. Phys. Chem., 99, 187-194, 1995. https://doi.org/10.1021/j100001a032
  33. Liu, Y. D. et al., Theor. Chem. Acc., 107, 140-146, 2002. https://doi.org/10.1007/s00214-001-0311-0
  34. Li, Q. S. and Zhao, J. F., J. Phys. Chem. A, 106, 5928-5931, 2002. https://doi.org/10.1021/jp014402k
  35. Fau, S. et al., J. Phys. Chem. A, 106(18), 4639-4644, 2002. https://doi.org/10.1021/jp015564j
  36. Li, S. et al., Chem. J. Chinese Univ., 18, 297-299, 1997.
  37. Wang L. J. et al., Chem. Phys. Lett., 376(5-6), 698-703, 2003. https://doi.org/10.1016/S0009-2614(03)01058-3
  38. Zhou, H. et al., J. Mol. Graphics Modell., 25(4), 578-583, 2006. https://doi.org/10.1016/j.jmgm.2006.05.009
  39. Zhou, H. et al., Chem. Phys. Lett., 449(4-6), 272-275, 2007. https://doi.org/10.1016/j.cplett.2007.10.076
  40. Douglas, A. E., et al., Canadian Journal of Physics, 43(12), 2216-2221, 1965. https://doi.org/10.1139/p65-216
  41. Hansen N. et al., J. Phys. Chem. A, 107, 10608, 2003.
  42. Hansen, N. et al., J. Chem. Phys., 123, 104305, 2005. https://doi.org/10.1063/1.1948381
  43. Zhang, J. et al., Phys. Chem. Chem. Phys., 8, 1690-1696, 2006. https://doi.org/10.1039/b600599c
  44. Larson, C. et al., J. Phys. Chem., 112(6), 1105-1111, 2008. https://doi.org/10.1021/jp076779h
  45. Dyke, J. M. et al., Mol. Phys., 47, 1231-1240, 1982. https://doi.org/10.1080/00268978200100922
  46. Samartzis, P. C. et al., J. Chem. Phys., 123(5), 051101, 2005. https://doi.org/10.1063/1.1993590
  47. Whitaker, M. et al., Phys. Rev. A, 24, 743-745, 1981. https://doi.org/10.1103/PhysRevA.24.743
  48. Zheng, J. P. et al., Chem. Phys. Lett., 328, 227-233, 2000. https://doi.org/10.1016/S0009-2614(00)00926-X
  49. Cacase, F. et al., Science, 295, 480-481, 2002. https://doi.org/10.1126/science.1067681
  50. Renie E. E. and Mayer, P. M., J. Chem. Phys., 120(22), 10561-10578, 2004. https://doi.org/10.1063/1.1705571
  51. Zurer, P., Chem. Eng. News, 77(4), 7, 1999.
  52. Vij, A. and Christe, K. O. et al., Angew. Chemie, Int. Ed., 41, S. 3051-3054, 2002. https://doi.org/10.1002/1521-3773(20020816)41:16<3051::AID-ANIE3051>3.0.CO;2-T
  53. Bartlett, R. J., "Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics," University of Florida, To be Published at 2015, http://users.clas.ufl.edu/rodbartl/pdf_files/polynitrogen%20Tobita.pdf
  54. Teter, M. et al., Science, 5271(5245), 53-55, 1996.
  55. Laniel, D et al., J. Chem. Phys., 140, 184701(1-8), 2014. https://doi.org/10.1063/1.4870830
  56. Klapoke, T. M, et al., "High Nitrogen Compounds for use in Low-Erosivity Gun Propellants," http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA504339.
  57. Klapotke, T. M. et al., J. Mater. Chem., 18, 5248-5258, 2008. https://doi.org/10.1039/b811273h
  58. Wang, Z. et al., Journal of Energetic Materials, 32, 227-237, 2014. https://doi.org/10.1080/07370652.2013.823255
  59. Dippold, A., and T. M. Klapotke et al., Zeitschrift fur Anorganische und Allgemeine Chemie, 637(9), 1181-1193, 2011. https://doi.org/10.1002/zaac.201100102
  60. Qi, C. et al., J. Mater. Chem., 21, 3221-3225, 2011. https://doi.org/10.1039/c0jm02970j
  61. Katritzky, A. R. et al., J. of Org. Chem., 76(10), 4082-4087, 2011. https://doi.org/10.1021/jo200088s
  62. Jishkariani, D., C. et al., J. of Org. Chem., 78, 3349-3354, 2013. https://doi.org/10.1021/jo302697q
  63. Jishkariani, D. et al., J. Org. Chem., 77(13), 5813-5818, 2012. https://doi.org/10.1021/jo300611a
  64. Nimesh, S et al., Propellants Explos. Pyrotech., 40, 426-432, 2015. https://doi.org/10.1002/prep.201400220
  65. Bennion, J. C. et al., Cryst. Growth Des., 15, 2545-2549, 2015 https://doi.org/10.1021/acs.cgd.5b00336
  66. M. Klapctke, et al., Propellants Explos. Pyrotech., 40, 366-373, 2015. https://doi.org/10.1002/prep.201400294
  67. Fischer D. and Klapotke, T. M. et al., New J. Chem., 39, 1619-1627, 2015. https://doi.org/10.1039/C4NJ01351D
  68. Rice. B. M. et al., "Computational Aspects Of Nitrogen-Rich HEDMs," High Energy Density Materials, Springer, Berlin-eidelberg, pp. 153-94 (Structure and Bonding Ser., Vol. 125), 2007.