DOI QR코드

DOI QR Code

Numerical Study on Characteristics of Gas Leakage in an Underground Combined Cycle Power Plant

지하 복합발전 플랜트 내부의 가스 누출 특성에 대한 수치해석 연구

  • Bang, Joo Won (School of Mechanical System Engineering, Chung-Ang University) ;
  • Sung, Kun Hyuk (School of Mechanical Engineering, Chung-Ang University) ;
  • Ryou, Hong Sun (School of Mechanical Engineering, Chung-Ang University) ;
  • Lee, Seong Hyuk (School of Mechanical Engineering, Chung-Ang University)
  • 방주원 (중앙대학교 기계시스템엔지니어링학과) ;
  • 성건혁 (중앙대학교 기계공학과) ;
  • 유홍선 (중앙대학교 기계공학과) ;
  • 이성혁 (중앙대학교 기계공학과)
  • Received : 2016.04.08
  • Accepted : 2016.05.12
  • Published : 2016.05.31

Abstract

The present study numerically investigated the gas leakage characteristics in a simplified underground combined cycle power plant. The effect of obstacles near a crack location on the gas concentration in the confined space was analyzed by using the lower flammable limit (LFL) of methane gas. When the jet flow was close to the vertical walls, the longitudinal leakage distance increased by about 60% (when an obstacles was present) compared to the case without any obstacle, because these obstacles prevented transverse flows. In addition, when an air filter was installed near to the trajectory of the gas flow, the longitudinal leakage distance was similar to the distance between the crack and obstacle, whereas the transverse leakage distance increased up to 8 times compared to the case without any obstacle. As the jet flow impacts on the obstacle and changes its direction, the gas flows recirculate. Therefore, it is necessary to consider the effect of the structure and facility locations on the trajectory of the jet flow to propose an accident prevention system in confined spaces.

본 연구에서는 수치해석 기법을 활용하여 간략화한 지하 복합발전 플랜트 내 파공 위치에 따른 가스 확산 및 유동특성을 고찰하였다. 특히 가스 누출 위치 주변의 장애물 배치가 밀폐 공간 내부의 가스 농도 분포에 미치는 영향을 분석하였으며, 메탄가스의 가연 한계 값을 이용하여 누출 특성을 정량적으로 비교하였다. 수치해석 결과, 분사류 주변으로 수직 벽면이 있을 경우, 장애물이 횡 방향 유동을 제한하여 종 방향 누출 거리가 장애물이 없을 경우에 비해 약 60% 가량 증가하였다. 하지만 Air filter가 가스 분사류 경로에 있을 경우, 횡 방향 누출 거리는 장애물이 없을 경우에 비해 최대 8배까지 증가하였다. 이러한 이유는 분사류가 수평 및 하부 방향으로 굴절되어 장애물 주변으로 재순환 유동이 형성되었기 때문이다. 따라서 밀폐공간 내 사고 방지 시스템 설계 시 주요 설비 위치 및 공간 구조가 누출 분사류 경로에 미치는 영향을 고려할 필요가 있다.

Keywords

References

  1. S. Scholfield, Offshore QRA and the ALARP principle, "Reliability Engineering and System Safety", 61, 1-2, pp. 31-37, 1998. https://doi.org/10.1016/S0951-8320(97)00062-8
  2. E. S. Kooi, H. K. Spoelastra, and P. Haag, "QRA Method of Land-use Planning around Onshore Natural Gas Production and Processing Plants", Chemical Engineering Transactions, 31, pp. 67-72, 2013.
  3. Y. Jo and B. J. Ahn, "A Method of Quantitative Risk Assessment for Transmission Pipeline Carrying Natural Gas", Journal of Hazardous Materials, 123, 1, pp. 1-12, 2005. https://doi.org/10.1016/j.jhazmat.2005.01.034
  4. G. Dong, L. Xue, Y. Yang, "Evaluation of Hazard Range for the Natural Gas Jet Released from a High-pressure Pipeline: a Computational Parametric Study", Journal of Loss Prevention in the Process Industries, 23, 4, pp. 522-530, 2010. https://doi.org/10.1016/j.jlp.2010.04.007
  5. Y. C. Choi, J. J. Ahn, D. M. Ha, T. H Kim and H. J. Oh, "A Study on Combustion Properties for Propane, Butane and LNG", Korean Institute of Fire Science & Engineering. pp. 68-72, 2002.
  6. R. Qi, D. Ng, B. R. Cormier and M. S. Mannan, "Numerical Simulations of LNG Vapor Dispersion in Brayton Fire Training Field Tests with ANSYS CFX", Journal of Hazardous Materials, 183, 1, pp. 51-61, 2010. https://doi.org/10.1016/j.jhazmat.2010.06.090
  7. B. Sun, R. P. Utikar, V. K. Pareek, and K. Guo, "Computational Fluid Dynamics Analysis of Liquefied Natural Gas Dispersion for Risk Assessment Strategies", Journal of Loss Prevention in the Process Industries, 26, 1, pp. 117-128, 2013. https://doi.org/10.1016/j.jlp.2012.10.002
  8. I. Yet-Pole, C. M. Shu, and C. H. Chong, "Applications of 3D QRA Technique to the Fire/Explosion Simulation and Hazard Mitigation within a Naphtha-cracking Plant", Journal of Loss Prevention in the Process Industries, 22, 4, pp. 506-515, 2009. https://doi.org/10.1016/j.jlp.2009.04.002
  9. J. R. Kim, S. M. Hwang and M. O. Yoon, "A Study on Damage Assessment Caused by Hydrogen Gas Leak in Tube Trailer Storage Facilities", Journal of Korean Institute of Fire Science & Engineering, 25, 6, pp. 32-38, 2011.
  10. ANSYS FLUENT 13.0 User's Guide, 2014.
  11. Y. Zhao, L. Xihong, and L. Jianho, Analysis on the Diffusion Hazards of Dynamic Leakage of Gas Pipeline, Reliability Engineering and System Safety, 92, 1, pp. 47-53, 2007. https://doi.org/10.1016/j.ress.2005.11.010
  12. M. J. Assael, and K. E. Kakosimos, "Fires, Explosion, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis", CRC Press, 2010.
  13. 49 CFR Part 193, Liquefied Natural Gas Facilities: Federal Safety Standards.