• Title/Summary/Keyword: Obstacle Effect

Search Result 248, Processing Time 0.026 seconds

The Effect of Obstacle Height on Balance Control While Stepping Over an Obstacle From a Position of Quiet Stance in Older Adults (노인의 정적인 자세로부터 장애물 보행 시 장애물 높이의 변화가 평형감각에 미치는 효과)

  • Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.75-80
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effect of an obstacle height on the balance control of older adults while stepping over an obstacle from a position of quiet stance. Methods: Fifteen community-dwelling healthy older adults (mean age, $74.4\pm4.27$ yrs; age range, 67-82 yrs) volunteered to participate in this study. The subjects performed gait initiation (GI) and they stepped over obstacles of two different heights (10 cm and 18 cm) at a self-paced speed from a position of quiet stance. Their performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Results: The M-L displacement of the COP significantly increased for an 18 cm obstacle height condition as compared to the GI and a 10 cm obstacle height condition (p<0.01). Furthermore, the M-L displacement of the COP for a 10 cm high obstacle was significantly greater for that for the GI (p<0.01). However, the mean of the A-P displacement of the COP was similar between the stepping conditions for the A-P displacement of the COP (p>0.05). Conclusion: This study suggests that the M-L COP displacement could be a better parameter to identify the dynamic balance control in older adults when negotiating obstacles.

  • PDF

Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower (냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석)

  • Lee Jung-Hee;Choi Young-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

The Kinetic and Kinematic Effect of a 12-week Aquatic Exercise Program on Obstacle Gait in Older Women (12주간 수중운동이 노인여성의 장애물보행에 미치는 운동학 및 운동역학적 영향)

  • Choi, Pyoung-Hwa;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • The purpose of this study is to investigate the effect of a 12-week aquatic exercise on obstacle gait in older women. Originally, 20 healthy female elderly participated this study but 12 of them completed the program. All participants were trained in the aquatic exercise program by an authorized trainer. They had come to the authors' lab three times during training period(0, 6, 12 weeks) and performed obstacle gait with three different height(0, 30, and 50% of leg length). After performed 3-Dimensional motion analysis following results were found. (1) For the CV, MVHC, TC, HC, statistically significances were shown in obstacle height. Although significant training effects were not shown, all variables showed typical patterns and it was considered as efficient motion to overcome the height obstacles. (2) The anterior-posterior and vertical GRF of support leg during support phase were revealed in height effect but in training one. However, differences between Peak 1 and Peak 2 in vertical GRF increased as training period increased. (3) Knee and hip resultant joint moments were affected by training but ankle resultant moments remained unchanged.

Effects of Task-Specific Obstacle Crossing Training on Functional Gait Capability in Patients with Cerebellar Ataxia: Feasibility Study

  • Park, Jin-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.112-117
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the effects of a task-specific obstacle crossing rehabilitation program on functional gait ability in patients with cerebellar ataxia. Overall, we sought to provide ataxia-specific locomotor rehabilitation guidelines for use in clinical practice based on quantitative evidence using relevant analysis of gait kinematics including valid clinical tests. Methods: Patients with cerebellar disease (n=13) participated in obstacle crossing training focusing on maintenance of dynamic balance and posture, stable transferring of body weight, and production of coordinated limb movements for 8 weeks, 2 times per week, 90 minutes per session. Throughout the training of body weight transfer, the instructions emphasized conscious perception and control of the center of body stability, trunk and limb alignment, and stepping kinematics during the practice of each walking phase. Results: According to the results, compared with pre-training data, foot clearance, pre-&post-obstacle distance, delay time, and total obstacle crossing time were increased after intervention. In addition, body COM measures indicated that body sway and movement variability, therefore posture stability during obstacle crossing, showed improvement after training. Based on these results, body sway was reduced and stepping pattern became more consistent during obstacle crossing gait after participation in patients with cerebellar ataxia. Conclusion: Findings of this study suggest that task-relevant obstacle crossing training may have a beneficial effect on recovery of functional gait ability in patients with cerebellar disease.

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang;Xiang Fan;Wenhao Lu;Jian Yao;Zhike Sui
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.132-151
    • /
    • 2024
  • Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

Effects of a Water Exercise on the Lower Extremities Coordination during Obstacle Gait in the Female Elderly - Focusing on Training and Detraining Effects - (수중운동이 여성노인 장애물보행 시 하지 협응에 미치는 영향 - 훈련 및 훈련잔여효과 중심으로 -)

  • Yoon, Sukhoon;Chang, Jae-Kwan;Kim, Joonyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • The purpose of this study was to investigate the training and detraining effects of a 8-week water exercise on lower extremities coordination during obstacle gait in the female elderly. Eight elderly participants (age: $76.58{\pm}4.97$ yrs, height: $148.88{\pm}7.19$ cm, body mass: $56.62{\pm}6.82$ kg, and leg length: $82.36{\pm}2.98$ cm), who stayed at the Seoul K welfare center, were recruited for this study. All participants had no history of orthopedic abnormality within the past 1 year and completed the aquatic exercise program which lasted for 8 weeks. To identify the training and detraining effect of 8 weeks of water exercise, a 3-D motion analysis with 7 infrared cameras and one force plate sampling frequency set at 100 Hz and 1,000 Hz, respectively, was performed. A two-way ANOVA was performed to find training and detraining effects among diferent obstacle heights. In this study significant level was set at .05. Significant training effects of LTS (lead foot thigh and shank) coordination in all obstacle height were found (p<.05). It is also found that the training effect of LTS remained 37%, 58%, and 25% in obstacle height of 30%, 40%, and 50%, respectively. Lead foot showed the greater detraining effect of coordination compared with trail foot, and SF (shank and foot) coordination revealed better detraining effects of coordination compare with TS (thigh and shank) in both feet. Based on the findings, a 8 week water exercise give an positive effects to the elderly in terms of segment cooperation which potentially helps reducing their accident falls. The magnitude of detraining may also help the elderly to find the retraining moment.

Obstacle Avoidance for Mobile Robot using Focus of a Camera Lens (카메라 렌즈의 초점을 이용한 이동로봇의 장애물 회피)

  • Yoon, Ki-Don;Oh, Sung-Nam;Han, Chul-Wan;Kim, Kab-Il;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.255-257
    • /
    • 2005
  • This paper describes a method for obstacle avoidance and map building for mobile robots using one CCD camera. The captured image from one camera has the feature that some parts where focused look fine but the other parts look blear (this is the out-focusing effect). Using this feature a mobile robot can find obstacles in his way from the captured image. After Processing the image, a robot can not only determine whether an obstacle is in front of him or not, but also calculate the distance from obstacles based on image data and the focal distance of its camera lens. Finally, robots can avoid the obstacle and build the map using this calculated data.

  • PDF

Three-Dimensional Numerical Analysis on Recirculation Generated by Obstacles Around a Cooling Tower (냉각탑 주위 장애물에 의한 재순환 현상에 관한 3차원 수치해석)

  • Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.225-234
    • /
    • 2009
  • The present study has been preformed to investigate the effect of obstacles around a cooling tower with air-guide to prevent recirculation. The external region as well as the cooling tower are included in the computational domain to analyze the flow phenomena around a cooling tower accurately. Three-dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard turbulence model is used to consider the turbulence effect. In order to investigate the recirculation phenomena, flow and temperature fields are calculated with the distance between cooling tower and obstacle, the allocated geometrical type and the air-guide. The moisture fraction rates decrease with increment of the distance between cooling tower and obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

Effect of Obstacle Walking Training Combined with Cognitive Tasks on Balance, Gait, and Activities of Daily Living in Patients with Stroke: A Single Case Study (인지과제를 결합한 장애물 보행훈련이 뇌졸중 환자의 균형과 보행능력 및 일상생활동작에 미치는 효과 -단일사례연구-)

  • Min-Jeong Song;Beom-Ryong Kim
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • Purpose: This study aims to compare the effects of obstacle walking training combined with cognitive tasks on balance, gait, and activities of daily living in patients with stroke. Methods: A single-subject design was used, where one stroke patient participated. Obstacle walking training combined with cognitive tasks was performed for 1 hour per day for a total of 10 times during the intervention phase. The subjects were measured five times in the baseline phase, 10 times in the intervention phase, and five times in the follow-up phase. The outcome measurements included the Berg balance scale (BBS), the 10-meter walk test (10 MWT), and the Korean modified Barthel index (K-MBI). Results: In this study, the results showed that the 10 MWT scores during the intervention period improved and that this improvement remained, even during the post-period. In addition, BBS and K-MBI values for stroke patients increased significantly after training. Conclusion: The results of this study revealed that obstacle walking training combined with cognitive task training may be helpful to improve balance, gait, and activities of daily living in stroke patients. Therefore, obstacle walking training combined with cognitive tasks is recommended for stroke patients.

Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles (고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의)

  • Choong Hun, Shin;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.211-221
    • /
    • 2022
  • The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup height of solitary waves by submerged and floating rectangular obstacles. It was confirmed that the SWASH model reproduces the propagation, breaking, and runup of solitary waves quite well. In addition, it was confirmed that the wave deformation of the solitary wave by submerged and floating rectangular obstacles was well reproduced. Finally, we conducted an examination of the effect of reducing the runup height of submerged and floating rectangular obstacles. Reduced runup heights are calculated and the characteristics of runup height reduction according to the dimensions of the obstacle were analyzed. The energy attenuation effect of the floating obstacle is greater than the submerged obstacle, and it is shown to be more effective in reducing the runup height.