DOI QR코드

DOI QR Code

Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride

지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석: 염화제일수은에 대한 응용성

  • Kim, Geug Tae (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Kwon, Moo Hyun (Department of Energy Engineering, Woosuk University)
  • 김극태 (한남대학교 화공신소재공학과) ;
  • 권무현 (우석대학교 에너지공학과)
  • Received : 2016.03.21
  • Accepted : 2016.04.05
  • Published : 2016.06.10

Abstract

In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of $Hg_2Cl_2-I_2$ system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component $I_2$ as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component $I_2$. Under microgravity conditions below $10^{-3}g_0$, the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than $10^{-3}g_0$, the effects of convection would be negligible.

본 연구에서는 지상 및 미소중력환경하에서 물리적 승화법 공정에서의 확산-대류유동에 미치는 불순물의 영향을 이론적으로 $Hg_2Cl_2-I_2$ 시스템에 적용하여 규명하는 것이다. 이론적 해석은 증기상에서 확산-대류 흐름, 열 및 물질전달을 속도 벡터 흐름, 유선, 온도, 농도 분포를 통하여 제시된다. 결정 영역에서의 전체 몰플럭스는 중력가속도와 성분 $I_2$, 불순물에 상당히 민감하게 반응한다. 성분 $I_2$을 증가시켰을 때, 농도 대류효과는 확산-대류 유동흐름을 안정화시키는 경향이 있다. 지상중력가속도의 0.001환경에서는 유동흐름은 1차원포물선의 흐름 구조를 나타내며, 확산지배형태를 보여주고 있다. $10^{-3}$지상중력가속도 이하에서는 대류 영향은 무시할 수 있다.

Keywords

References

  1. K. W. Benz and P. Dold, Crystal growth under microgravity: present results and future prospects towards the international space station, J. Cryst. Growth, 237-239, 1638-1645 (2002). https://doi.org/10.1016/S0022-0248(01)02358-2
  2. P. Fontana, J. Schefer, and D. Pettit, Characterization of sodium chloride crystals grown in microgravity, J. Cryst. Growth, 324, 207-211 (2011). https://doi.org/10.1016/j.jcrysgro.2011.04.001
  3. M. Nobeoka, Y. Takagi, Y. Okano, Y. Hayakawa, and S. Dost, Numerical simulation of InGaSb crystal growth by temperature gradient method under normal- and micro-gravity fields, J. Cryst. Growth, 385, 66-71 (2014). https://doi.org/10.1016/j.jcrysgro.2013.04.061
  4. K. Kinoshita, Y. Arai, Y. Inatomi, T. Tsukada, S. Adachi, H. Miyata, R. Tanaka, J. Yoshikawa, T. Kihara, H. Tomioka, H. Shibayama, Y. Kubota, Y. Warashina, Y. Sasaki, Y. Ishizuka, Y. Harada, S. Wada, T. Ito, M. Takayanagi, and S. Yoda, Growth of a $Si_{0.50}Ge_{0.50}$ crystal by the traveling liquids-zone (TLZ) method in microgravity, J. Cryst. Growth, 388, 12-16 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.020
  5. K. Abe, S. Sumioka, K.-I. Sugioka, M. Kubo, T. Tsukada, K. Kinoshita, Y. Arai, and Y. Inatomi, Numerical simulation of SiGe crystal growth by the traveling llquidus-zone method in a microgravity environment, J. Cryst. Growth, 402, 71-77 (2014). https://doi.org/10.1016/j.jcrysgro.2014.05.007
  6. C. Stelian and T. Duffar, Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions, J. Cryst. Growth, 429, 19-26 (2015). https://doi.org/10.1016/j.jcrysgro.2015.07.034
  7. Z. Li, J. H. Peterson, A. Yeckel, and J. J. Derby, Analysis of the effects of a rotating magnetic field on the growth of cadmium zinc telluride by the traveling heater method under microgravity conditions, J. Cryst. Growth, Doi: 10.1016/j.jcrysgro.2015.12.046.
  8. W. M. B. Duval, N. B. Singh, and M. E. Glicksman, Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment, J. Cryst. Growth, 174, 120-129 (1997). https://doi.org/10.1016/S0022-0248(96)01088-3
  9. E. N. Kolesnikova, Yu. A. Polovko, V. S. Yuferev, and A. I. Zhmakin, Influence of coriolis force on thermal convection and impurity segregation during crystal growth under microgravity, J. Cryst. Growth, 180, 578-586 (1997). https://doi.org/10.1016/S0022-0248(97)00268-6
  10. F. Otalora and J. M. Garcia-Ruiz, Crystal growth studies in microgravity with the APCF I. Computer simulation of transport dynamics, J. Cryst. Growth, 182, 141-154 (1997). https://doi.org/10.1016/S0022-0248(97)00325-4
  11. J. M. Garcia-Ruiz and F. Otalora, Crystal growth studies in microgravity with the APCF II. Image analysis studies, J. Cryst. Growth, 182, 155-167 (1997). https://doi.org/10.1016/S0022-0248(97)00326-6
  12. C. W. Lan and C. Y. Tu, Three-dimensional analysis of flow and segregation control by slow rotation for Bridgman crystal growth in microgravity, J. Cryst. Growth, 237, 1881-1885 (2002).
  13. S. Maruyama, K. Ohno, A. Komiya, and S. Sakai, Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches, J. Cryst. Growth, 245, 278-288 (2002). https://doi.org/10.1016/S0022-0248(02)01574-9
  14. M. Catauro, F. Bollino, and F. Papale, Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol-gel hybrid coatings, Acta Astronaut., 122, 237-242 (2016). https://doi.org/10.1016/j.actaastro.2016.01.029
  15. K. Harth, T. Trittel, K. May, S. Wegner, and R. Stannarius, Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity, Adv. Space Res., 55, 1901-1912 (2015). https://doi.org/10.1016/j.asr.2015.01.027
  16. K. Nishino, T. Yano, H. Kawamura, S. Matsumoto, I. Ueno, and M. K. Ermakov, Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity, J. Cryst. Growth, 420, 57-63 (2015). https://doi.org/10.1016/j.jcrysgro.2015.01.039
  17. Y. Yang, L. M. Pan, and J.-J. Xu, Effects of microgravity on Marangoni convection and growth characteristic of a single bubble, Acta Astronaut., 100, 129-139 (2014). https://doi.org/10.1016/j.actaastro.2014.04.005
  18. D. E. Melinikov, V. Shevtsova, T. Yano, and K. Nishino, Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios, Int. J. Heat Mass Transf., 87, 119-127 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.016
  19. C. Konishi and I. Mudawar, Review of flow boiling and critical heat flux in microgravity, Int. J. Heat Mass Transf., 80, 469-493 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.017
  20. L. Carotenuto, Crystal growth from the vapour phase in microgravity, Prog. Cryst. Growth Charact. Mater., 48/49, 166-188 (2004). https://doi.org/10.1016/j.pcrysgrow.2005.05.002
  21. A. Yeckel and J. J. Derby, Dynamics of three-dimensional convection in microgravity crystal growth: G-jitter with steady magnetic fields, J. Cryst. Growth, 263, 40-52 (2004). https://doi.org/10.1016/j.jcrysgro.2003.11.047
  22. Z. Zeng, H. Mizuseki, K. Simamura, T. Fukuda, K. Higashino, and Y. Kawazoe, Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity, Int. J. Heat Mass Transf., 44, 3765-3774 (2001). https://doi.org/10.1016/S0017-9310(01)00012-6
  23. T. Maekawa, Y. Hiraoka, K. Ikegami, and S. Matsumoto, Numerical modelling and analysis of binary compound semiconductor growth under microgravity conditions, J. Cryst. Growth, 229, 605-609 (2001). https://doi.org/10.1016/S0022-0248(01)01237-4
  24. D. R. Liu, N. Mangelinck-Noel, C. A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Simulation of directional solidification of refined Al-7wt.% Si alloys- Comparison with benchmark microgravity experiments, Acta Mater., 93, 24-37 (2015). https://doi.org/10.1016/j.actamat.2015.03.058
  25. P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flow fields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004). https://doi.org/10.1016/j.finel.2003.09.003
  26. N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Cryst. Growth, 137, 155-160 (1994). https://doi.org/10.1016/0022-0248(94)91265-3
  27. Y. K. Lee and G. T. Kim, Effects of convection on physical vapor transport of $Hg_{2}Cl_{2}$ in the presence of Kr-Part I: under microgravity environments, J. Korean Cryst. Growth Cryst. Technol., 23, 20-26 (2013). https://doi.org/10.6111/JKCGCT.2013.23.1.020
  28. G. T. Kim, Effects of aspect ratio on diffusive-convection during physical vapor transport of $Hg_{2}Cl_{2}$ with impurity of NO, Appl. Chem. Eng., 26, 746-752 (2015). https://doi.org/10.14478/ace.2015.1112
  29. G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_{2}Br_{2}$ and $Br_{2}$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014). https://doi.org/10.9713/kcer.2014.52.1.75
  30. D. W. Greenwell, B. L. Markham, and F. Rosenberger, Numerical modeling of diffusive physical vapor transport in cylindrical Ampoules, J. Cryst. Growth, 51, 413-425 (1981). https://doi.org/10.1016/0022-0248(81)90418-8
  31. B. L. Markham, D. W. Greenwell, and F. Rosenberger, Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules, J. Cryst. Growth, 51, 426-437 (1981). https://doi.org/10.1016/0022-0248(81)90419-X

Cited by

  1. A time dependent thermal and solutal convection problem in physical vapor transport of Hg2Cl2-I2 system vol.27, pp.2, 2016, https://doi.org/10.6111/jkcgct.2017.27.2.080