DOI QR코드

DOI QR Code

Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers

산 담지 전자선 조사가 피치계 탄소섬유의 표면특성에 미치는 영향

  • Jung, Min-Jung (Department of Applied Chemical Engineering, Chungnam National University) ;
  • Park, Mi-Seon (Department of Applied Chemical Engineering, Chungnam National University) ;
  • Lee, Sangmin (Department of Applied Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemical Engineering, Chungnam National University)
  • 정민정 (충남대학교 응용화학공학과) ;
  • 박미선 (충남대학교 응용화학공학과) ;
  • 이상민 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2016.04.21
  • Accepted : 2016.05.12
  • Published : 2016.06.10

Abstract

In this study, pitch-based carbon fibers in the acid were radiated with an electron beam to modify their surface, and surface changes were investigated according to each treatment conditions. Nitric acid and hydrogen peroxide were used as a drenched acidic solution and an electron beam dose was set to 200 and 400 kGy. The use of nitric acid introduced more oxygen functional groups on carbon fiber surfaces than that of using hydrogen peroxide, and also introduced nitrogen functional groups into the carbon fiber surface. In addition, oxygen functional groups introduced on carbon fiber surface increased as the electron beam dose increased due to the fact that the oxidizing material can be easily formed by e-beam radiation in nitric acid than the hydrogen peroxide, and also the higher energy electron beam dose can help forming more oxidizing materials. Moreover, the generation of C=O functional groups was favorable when using nitric acid because oxidizing C-OH functional groups to the C=O functional groups mainly occurred by $NO_2$ radicals generated by the electron beam radiation in a nitric acid solution.

본 연구에서는 피치계 탄소섬유의 표면처리를 위하여 탄소섬유를 산에 담지하여 전자선을 조사하고 각 처리 조건에 따른 탄소섬유의 표면 변화를 평가하였다. 산 담지용액은 질산과 과산화수소를 사용하였으며 전자선 조사량은 200, 400 kGy로 하였다. 과산화수소 담지보다 질산 담지가 탄소섬유 표면에 더 많은 산소관능기를 도입시켰으며, 질소관능기도 탄소섬유 표면에 도입되었다. 또한 전자선 조사량이 증가하면 탄소섬유에 도입되는 산소관능기가 증가하는 것을 알 수 있었다. 이는 과산화수소보다 질산이 전자선 조사에 의한 산화성 물질의 형성이 용이하고, 전자선 조사 에너지가 클수록 산화성 물질이 더 많이 형성되기 때문이다. 또한 질산 용액에서 전자선 조사에 의하여 생성되는 $NO_2$ 라디칼이 C-OH 관능기를 C=O 관능기로 산화시키는 반응이 주로 일어나므로 질산 담지 시 C=O 관능기의 생성이 유리한 것으로 나타났다.

Keywords

References

  1. S. Lim, D. Jung, S. H. Yoon, and I. Mochida, Carbon materials as catalysts, Carbon Lett., 9, 47-60 (2008). https://doi.org/10.5714/CL.2008.9.1.047
  2. S. H. Han, H. J. Oh, and S. S. Kim, Evaluation of mechanical property of carbon fiber/polypropylene composite according to carbon fiber surface treatment, Trans. Korean Soc. Mech. Eng. A, 37, 791-796 (2013). https://doi.org/10.3795/KSME-A.2013.37.6.791
  3. J. S. Lee and T. J. Kang, Effect of Surface Treatment of Carbon Fiber on the Impact Property of Carbon/Carbon Composites, J. Korean Fiber Soc., 34, 884-890 (1997).
  4. P. Hancock and R. C. Cuthbertson, The effect of fibre length and interfacial bond in glass fibre-epoxy resin composites, J. Mater. Sci., 5, 762-768 (1970). https://doi.org/10.1007/BF00562162
  5. C. K. Moon, Y. S. Um, H. H. Cho, J. O. Lee, and T. W. Park, The effect of surface-treatment of fiber on the mechanical properties of carbon fiber reinforced plastics. 2: The effect of surface-treatment on the interfecial shear strength, Polym. Korea, 14, 630-637 (1990).
  6. L. Di Landro and M. Pegoraro, Carbon fibre thermoplastic matrix adhesion, J. Mater. Sci., 22, 1980-1986 (1987). https://doi.org/10.1007/BF01132927
  7. S. J. Park and B. J. Kim, Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior, Mater. Sci. Eng. A-Struct. Mater., 408, 269-273 (2005). https://doi.org/10.1016/j.msea.2005.08.129
  8. H. Yuan, C. Wang, S. Zhang, and X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Appl. Surf. Sci., 259, 288-293 (2012). https://doi.org/10.1016/j.apsusc.2012.07.034
  9. S. J. Park, M. K. Seo, and K. Y. Rhee, Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites, Mater. Sci. Eng. A-Struct. Mater., 356, 219-226 (2003). https://doi.org/10.1016/S0921-5093(03)00134-5
  10. M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinsonc, and J. M. Saveant, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801-807 (1997). https://doi.org/10.1016/S0008-6223(97)00010-9
  11. J. Li, The effect of surface modification with nitric acid on the mechanical and tribological properties of carbon fiber-reinforced thermoplastic polyimide composite, Surf. Interface Anal., 41, 759-763 (2009). https://doi.org/10.1002/sia.3089
  12. M. Paligova, J. Vilcakova, P. Saha, V. Kresalek, J. Stejskal, and O. Quadrat, Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base, Physica A, 335, 421-429 (2004). https://doi.org/10.1016/j.physa.2003.12.002
  13. C. U. Pittman Jr, G. R. He, B. Wu, and S. D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, 35, 317-331 (1997). https://doi.org/10.1016/S0008-6223(97)89608-X
  14. J. Li, Interfacial studies on the $O_{3}$ modified carbon fiber-reinforced polyamide 6 composites Appl. Surf. Sci., 255, 2822-2824 (2008). https://doi.org/10.1016/j.apsusc.2008.08.013
  15. J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000). https://doi.org/10.1023/A:1004791313979
  16. Y. Xie and P. M. A. Sherwood, X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. part XII: The effect of microwave plasma treatment on pitch-based carbon fiber surfaces, Appl. Spectrosc., 44, 797-803 (1990). https://doi.org/10.1366/0003702904087154
  17. M. L. Sham, J. Li, P. Ma, and J. K. Kim, Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review, J. Compos. Mater., 43, 1537-1564 (2009). https://doi.org/10.1177/0021998308337740
  18. J. Y. Sohn, J. S. Lim, S. J. Gwon, J. H. Shin, J. H. Choi, and Y. C. Nho, A Study on the Improvement of the thermal stability of a commercial polyethylene separator for lithium secondary battery by an electron beam irradiation, Polym. Korea, 32, 598-602 (2008).
  19. A. F. Michels, P. A. Soave, J. Nardi, P. L. G. Jardim, S. R. Teixeira, D. E. Weibel, and F. Horowitz, Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces, J. Mater. Sci., 51, 1316-1323 (2016). https://doi.org/10.1007/s10853-015-9449-3
  20. H. Khan, B. Gahfoor, M. S. Mehmood, M. Ahmad, T. Yasin, and M. Ikram, Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene, Radiat. Phys. Chem., 117, 172-177 (2015). https://doi.org/10.1016/j.radphyschem.2015.08.013
  21. D. Teweldebrhan and A. A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, 013101 (2009). https://doi.org/10.1063/1.3062851
  22. S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007). https://doi.org/10.1016/j.diamond.2006.05.009
  23. K. H. Kim, M. S. Park, M. J. Jung, and Y. S. Lee, Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber, Appl. Chem. Eng., 26, 598-603 (2015). https://doi.org/10.14478/ace.2015.1085
  24. D. R. Kauffman, D. C. Sorescu, D. P. Schofield, B. L. Allen, K. D. Jordan, and A. Star, Understanding the sensor response of metal-decorated carbon nanotubes, Nano Lett., 10, 958-963 (2010). https://doi.org/10.1021/nl903888c
  25. S. H. Kim Y. J. Noh, S. N. Kwon, B. N. Kim, B. C. Lee, S. Y. Yang, C. H. Jung, and S. I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015). https://doi.org/10.1016/j.jiec.2014.11.031
  26. D. A. Armstrong, W. L. Waltz, and A. Rauk, Carbonate radical anion - Thermochemistry, Can. J. Chem., 84, 1614-1619 (2006). https://doi.org/10.1139/v06-168
  27. I. Arslan-Alaton, A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater, Color. Technol., 119, 345-353 (2003). https://doi.org/10.1111/j.1478-4408.2003.tb00196.x
  28. S. Karthikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, and G. Sekaran, Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon, J. Ind. Eng. Chem., 21, 942-950 (2015). https://doi.org/10.1016/j.jiec.2014.04.036
  29. K. Artyushkova, S. Levendosky, P. Atanassov, and J. Fulghum, XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells, Top. Catal., 46, 263-275 (2007). https://doi.org/10.1007/s11244-007-9002-y
  30. M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization, Colloids Surf. A-Physicochem. Eng. Asp., 389, 274-280 (2011). https://doi.org/10.1016/j.colsurfa.2011.08.013
  31. R. Franca, D. A. Mbeh, T. D. Samani, C. Tien, M. A. Mateescu, L. Yahia, and E. Sacher, The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan, J. Biomed. Mater. Res. B, DOI: 10.1002/jbmb.32964.
  32. I. A. Shkrob, T. W. Marin, S. D. Chemerisov, and J. F. Wishart, Radiation and radical chemistry of $NO_{3}^{-}$, $HNO_{3}$, and dialkylphosphoric acids in room-temperature ionic liquids, J. Phys. Chem. B, 115, 10927-10942 (2011). https://doi.org/10.1021/jp206579j
  33. D. Georgiou, P. Melidis, A. Aivasidis, and K. Gimouhopoulos, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes Pigm., 52, 69-78 (2002). https://doi.org/10.1016/S0143-7208(01)00078-X
  34. S. J. Park, J. S. Oh, and D. H. Suh, Influence of ozone treatment of carbon fibers on GIIC of carbon fiber-reinforced composites, Appl. Chem. Eng., 14, 586-591 (2003).
  35. K. Ma, P. Chen, B. Wang, G. Cui, and X. Xu, A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites, J. Appl. Polym. Sci., 118, 1606-1614 (2010).
  36. T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test, Compos. Sci. Technol., 61, 599-605 (2001). https://doi.org/10.1016/S0266-3538(00)00239-6

Cited by

  1. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.264
  2. 전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성 vol.28, pp.3, 2016, https://doi.org/10.14478/ace.2017.1017
  3. Zift esaslı karbon fiber üretimi (tarama) vol.2018, pp.2018, 2016, https://doi.org/10.17341/gazimmfd.416440
  4. Zift esaslı karbon fiber üretimi (tarama) vol.2018, pp.2018, 2016, https://doi.org/10.17341/gazimmfd.416440
  5. 활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성 vol.30, pp.2, 2019, https://doi.org/10.14478/ace.2018.1122
  6. 활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향 vol.30, pp.6, 2019, https://doi.org/10.14478/ace.2019.1082
  7. 활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성 vol.21, pp.2, 2016, https://doi.org/10.17702/jai.2020.21.2.51